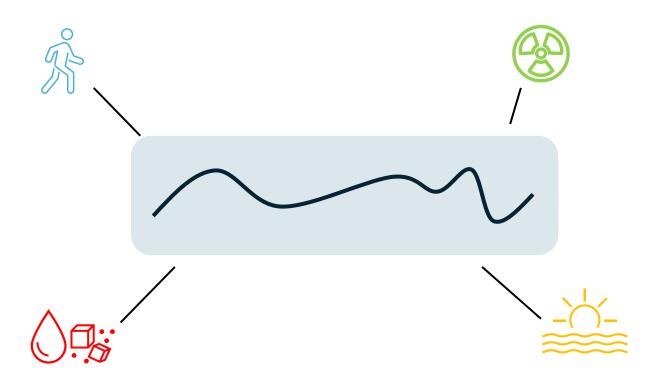
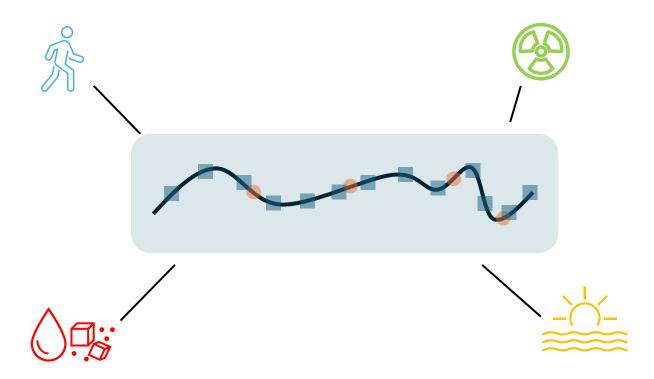
Optimal Sensor Scheduling and Selection for Continuous-Discrete Kalman Filtering with Auxiliary Dynamics

Mohamad Al Ahdab, John Leth, Zheng-Hua Tan

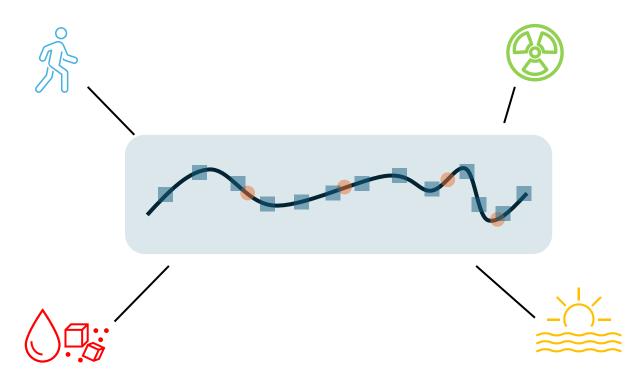
Many physical signals of interest evolves continuously in time.



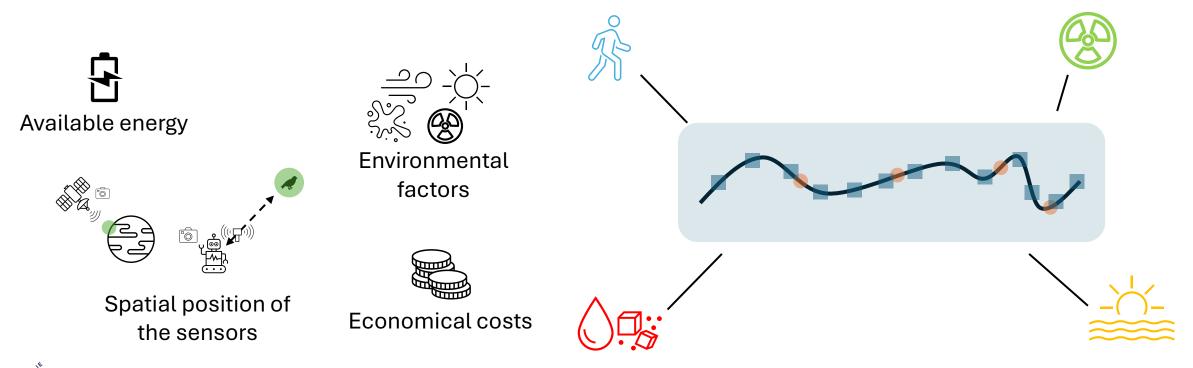
- Many physical signals of interest evolves continuously in time.
- But we can only measure them *discretely* (possibly with multiple sensors).



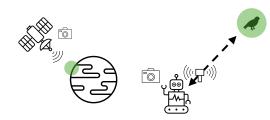
- Many physical signals of interest evolves continuously in time.
- But we can only measure them *discretely* (possibly with multiple sensors).
- We cannot sample with all the available sensors regularly at the same time.



- Many physical signals of interest evolves continuously in time.
- But we can only measure them <u>discretely</u> (possibly with multiple sensors).
- We cannot sample with all the available sensors regularly at the same time.



• We will refer to the variables interacting with the sensors as Auxiliary variables (ξ).



Spatial position of the sensors

The main question we attempt to answer in the paper is:

How can we schedule and select sensors with discrete measurements for continuously evolving signals while considering auxiliary variables?

We consider a State-Space Model (SSM) for the signal of interest:

$$dx = A(\xi, t)x dt + \sigma(\xi, t) dW, \qquad x_0 \sim \mathcal{N}(\mu_0, \Sigma_0),$$

We consider a State-Space Model (SSM) for the signal of interest:

$$dx = A(\xi, t)x dt + \sigma(\xi, t) dW, \qquad x_0 \sim \mathcal{N}(\mu_0, \Sigma_0),$$

with measurements from sensor s at time t_i :

$$y^{s}(t_{i}) = C_{s}(\xi(t_{i}), t_{i})x(t_{i}) + v^{s}(\xi(t_{i}), t_{i}), \qquad v^{s}(\xi(t_{i}), t_{i}) \sim \mathcal{N}(0, R_{s}(\xi(t_{i}), t_{i}))$$

We consider a State-Space Model (SSM) for the signal of interest:

$$dx = A(\xi, t)x dt + \sigma(\xi, t) dW, \qquad x_0 \sim \mathcal{N}(\mu_0, \Sigma_0),$$

with measurements from sensor s at time t_i :

$$y^{s}(t_{i}) = C_{s}(\xi(t_{i}), t_{i})x(t_{i}) + v^{s}(\xi(t_{i}), t_{i}), \qquad v^{s}(\xi(t_{i}), t_{i}) \sim \mathcal{N}(0, R_{s}(\xi(t_{i}), t_{i}))$$

We aim to estimate the state x(t) given the available measurements up until time t: Continuous-Discrete Kalman filter

We consider a State-Space Model (SSM) for the signal of interest:

$$dx = A(\xi, t)x dt + \sigma(\xi, t) dW, \qquad x_0 \sim \mathcal{N}(\mu_0, \Sigma_0),$$

with measurements from sensor s at time t_i :

$$y^{s}(t_{i}) = C_{s}(\xi(t_{i}), t_{i})x(t_{i}) + v^{s}(\xi(t_{i}), t_{i}), \qquad v^{s}(\xi(t_{i}), t_{i}) \sim \mathcal{N}(0, R_{s}(\xi(t_{i}), t_{i}))$$

We aim to estimate the state x(t) given the available measurements up until time t: Continuous-Discrete Kalman filter

Regression with Gaussian Processes for many covariance functions is <u>equivalent</u> to Kalman filtering and then smoothing [*].

[*] See for example: Hartikainen, Jouni, and Simo Särkkä. "Kalman filtering and smoothing solutions to temporal Gaussian process regression models." *2010 IEEE international workshop on machine learning for signal processing.* IEEE, 2010.

For the auxiliary variables:

$$\frac{d\xi_p}{dt} = f_p(\xi, u, t) + \sum_{s=1}^{S} g_s(\xi, u, t) \sum_{i=1}^{N_s(t)} \delta_{t_i^s},$$

$$\frac{d\xi_u}{dt} = f_u(\xi_u, u, t),$$

$$\xi = \begin{bmatrix} \xi_u \\ \xi_p \end{bmatrix}$$

For the auxiliary variables:

$$\frac{d\xi_p}{dt} = f_p(\xi, u, t) + \sum_{s=1}^{S} g_s(\xi, u, t) \sum_{i=1}^{N_s(t)} \delta_{t_i^s},$$

$$\frac{d\xi_u}{dt} = f_u(\xi_u, u, t),$$

$$\xi = \begin{bmatrix} \xi_u \\ \xi_p \end{bmatrix}$$

For the auxiliary variables:

Perturbed by measurements

$$\frac{d\xi_p}{dt} = f_p(\xi, u, t) + \sum_{s=1}^{S} g_s(\xi, u, t) \sum_{i=1}^{N_s(t)} \delta_{t_i^s},$$

$$\frac{d\xi_u}{dt} = f_u(\xi_u, u, t),$$

$$\xi = \begin{bmatrix} \xi_u \\ \xi_p \end{bmatrix}$$

For the auxiliary variables:

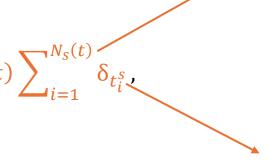
Perturbed by measurements

$$\frac{d\xi_p}{dt} = f_p(\xi, u, t) + \sum_{s=1}^{S} g_s(\xi, u, t) \sum_{i=1}^{N_s(t)} \xi_s(\xi, u, t)$$

$$\frac{d\xi_u}{dt} = f_u(\xi_u, u, t),$$

$$\xi = \begin{bmatrix} \xi_u \\ \xi_p \end{bmatrix}$$

Number of measurements from sensor s



Dirac delta (measurement event)

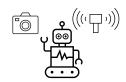
For the auxiliary variables:

Perturbed by measurements

Unperturbed by measurements

$$\frac{d\xi_p}{dt} = f_p(\xi, u, t) + \sum_{s=1}^S g_s(\xi, u, t) \sum_{i=1}^{N_s(t)} \delta_{t_i^s},$$
 its
$$\frac{d\xi_u}{dt} = f_u(\xi_u, u, t),$$

$$\xi = \begin{bmatrix} \xi_u \\ \xi_p \end{bmatrix}$$



 ξ_u is spatial position

For the auxiliary variables:

Perturbed by measurements

Unperturbed by measurements

$$\frac{d\xi_p}{dt} = f_p(\xi, \boldsymbol{u}, t) + \sum_{s=1}^S g_s(\xi, \boldsymbol{u}, t) \sum_{i=1}^{N_s(t)} \delta_{t_i^s},$$
 ats
$$\frac{d\xi_u}{dt} = f_u(\xi_u, \boldsymbol{u}, t),$$

$$\xi = \begin{bmatrix} \xi_u \\ \xi_p \end{bmatrix}$$

u: represents inputs/actions to the auxiliary dynamics.

u is acceleration

For the auxiliary variables:

Perturbed by measurements

Unperturbed by measurements

$$\frac{d\xi_p}{dt} = f_p(\xi, \boldsymbol{u}, t) + \sum_{s=1}^S g_s(\xi, \boldsymbol{u}, t) \sum_{i=1}^{N_s(t)} \delta_{t_i^s},$$
 ats
$$\frac{d\xi_u}{dt} = f_u(\xi_u, \boldsymbol{u}, t),$$

$$\xi = \begin{bmatrix} \xi_u \\ \xi_p \end{bmatrix}$$

u: represents inputs/actions to the auxiliary dynamics.

u is acceleration

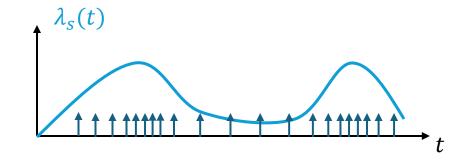
- We model the measurements events to be according to a Poisson process with variable rates ($\lambda_s(t)$ for sensor s).
- This allows us to obtain *continuously differentiable* upper bounds in the rates on the mean covariance matrix for the Kalman filter along the mean auxiliary state [*].

[*] assuming that:

$$\frac{d\xi_{p}}{dt} = f_{p}(\xi, u, t) + \sum_{s=1}^{S} g_{s}(\xi, u, t) \sum_{i=1}^{N_{s}(t)} \delta_{t_{i}^{s}}$$

$$f_{p}(\xi, u, t) = \alpha_{p}(\xi_{u}, u, t)\xi_{p} + \beta_{p}(\xi_{u}, u, t)$$

$$g_{s}(\xi, u, t) = \alpha_{s}(\xi_{u}, u, t)\xi_{p} + \beta_{s}(\xi_{u}, u, t)$$



- We model the measurements events to be according to a Poisson process with variable rates ($\lambda_s(t)$ for sensor s).
- This allows us to obtain *continuously differentiable* upper bounds in the rates on the mean covariance matrix for the Kalman filter along the mean auxiliary state [*].

[*] assuming that:

$$\frac{d\xi_{p}}{dt} = f_{p}(\xi, u, t) + \sum_{s=1}^{S} g_{s}(\xi, u, t) \sum_{i=1}^{N_{s}(t)} \delta_{t_{i}^{s}}$$

$$f_{p}(\xi, u, t) = \alpha_{p}(\xi_{u}, u, t) \xi_{p} + \beta_{p}(\xi_{u}, u, t)$$

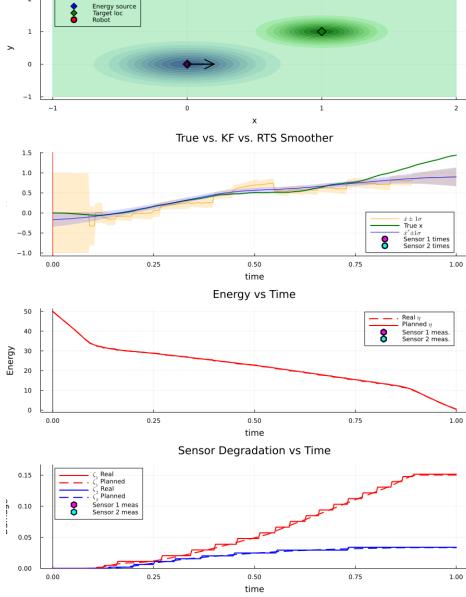
$$g_{s}(\xi, u, t) = \alpha_{s}(\xi_{u}, u, t) \xi_{p} + \beta_{s}(\xi_{u}, u, t)$$

 $\Lambda_{s}(t)$

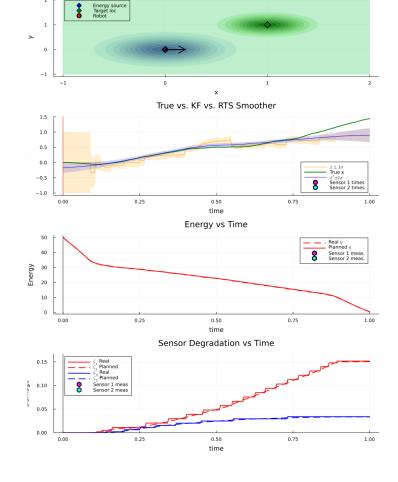
- We model the measurements events to be according to a Poisson process with variable rates ($\lambda_s(t)$ for sensor s).
- This allows us to obtain *continuously differentiable* upper bounds in the rates on the mean covariance matrix for the Kalman filter along the mean auxiliary state.
- Using the bounds, we formulate an optimal control problem (OCP) to optimize over the rates for each sensor $(\lambda_s(t))$ and the inputs/actions (u(t)) for a horizon of T.

- We model the measurements events to be according to a Poisson process with variable rates ($\lambda_s(t)$ for sensor s).
- This allows us to obtain *continuously differentiable* upper bounds in the rates on the mean covariance matrix for the Kalman filter along the mean auxiliary state.
- Using the bounds, we formulate an optimal control problem (OCP) to optimize over the rates for each sensor $(\lambda_s(t))$ and the inputs/actions (u(t)) for a horizon of T.
- Using optimal quantization, we derive a deterministic rule to select the measurement times for each sensor based on the corresponding optimized rate $(\lambda_s^*(t))$ to approximate the mean behavior.

Robot & Measurement Events



Covariance Trace			
Method	Mean	Std	Maximum
Optimized	1.90221	0.3406	2.94496
M-Optimized	1.92461	0.364315	3.00148
Greedy	2.60768	0.487677	3.21866
Random	2.2275	0.469839	2.9206
Energy η			
Method	Mean	Std	Maximum
Optimized	21.5435	10.1709	50.0
M-Optimized	22.3106	10.1279	50.0
Greedy	-1.67343	14.0586	50.0
Random	-17.4417	31.3537	50.0
Degradation $(\zeta_1 + \zeta_2)$			
Method	Mean	Std	Maximum
Optimized	0.0905529	0.0654335	0.185626
M-Optimized	0.0845751	0.0688232	0.195288
Greedy	0.193289	0.081316	0.232247
Random	0.792406	0.557986	1.57578



Robot & Measurement Events

Covariance Trace			
Method	Mean	Std	Maximum
Optimized	1.90221	0.3406	2.94496
M-Optimized	1.92461	0.364315	3.00148
Greedy	2.60768	0.487677	3.21866
Random	2.2275	0.469839	2.9206

Energy η			
Method	Mean	Std	Maximum
Optimized	21.5435	10.1709	50.0
M-Optimized	22.3106	10.1279	50.0

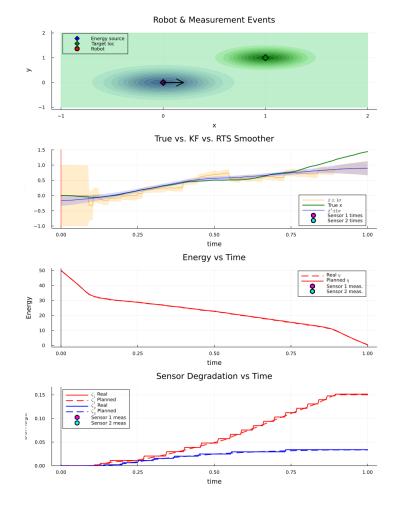
 M-Optimized
 22.3106
 10.1279
 50.0

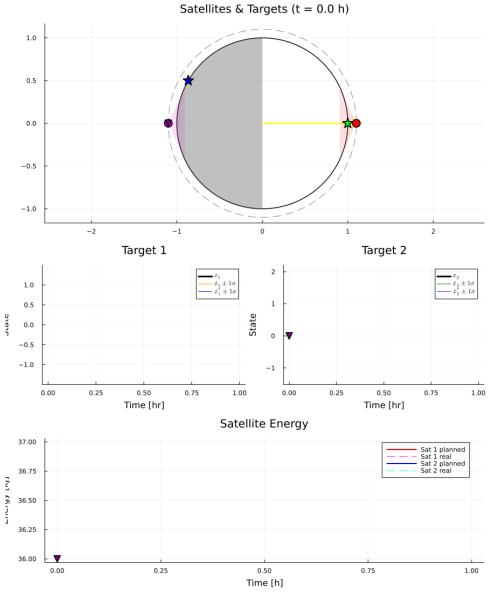
 Greedy
 -1.67343
 14.0586
 50.0

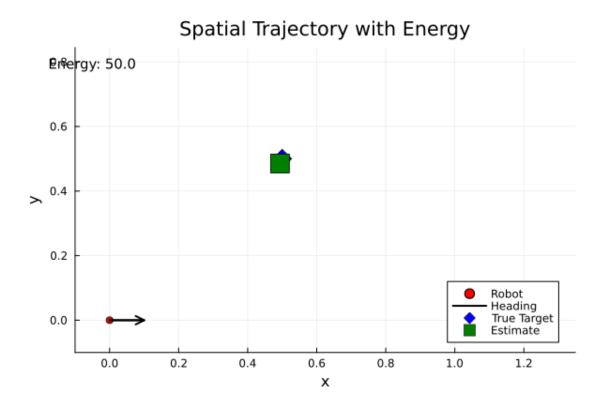
 Random
 -17.4417
 31.3537
 50.0

Degradation ($\varsigma_1 +$	(2)
---------------	-----------------	-----

Method	Mean	Std	Maximum
Optimized	0.0905529	0.0654335	0.185626
M-Optimized	0.0845751	0.0688232	0.195288
Greedy	0.193289	0.081316	0.232247
Random	0.792406	0.557986	1.57578







Thank you for watching ©!

