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• We will refer to the variables interacting with the sensors as Auxiliary variables (𝜉).
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Introduction

The main question we attempt to answer in the paper is: 

How can we schedule and select sensors with discrete 
measurements for continuously evolving signals while considering 

auxiliary variables? 
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Regression with Gaussian Processes for many covariance functions is 
equivalent to Kalman filtering and then smoothing [*].

We aim to estimate the state 𝑥(𝑡) given the available measurements up 
until time 𝑡: Continuous-Discrete Kalman filter

[*] See for example: Hartikainen, Jouni, and Simo Särkkä. "Kalman filtering and smoothing 
solutions to temporal Gaussian process regression models." 2010 IEEE international 
workshop on machine learning for signal processing. IEEE, 2010.
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• Using the bounds, we formulate an optimal control problem (OCP) to optimize over the rates for each sensor 
(𝜆𝑠(𝑡)) and the inputs/actions (𝑢(𝑡)) for a horizon of 𝑇.

• Using optimal quantization, we derive a deterministic rule to select the measurement times for each sensor 
based on the corresponding optimized rate (𝜆𝑠

∗(𝑡)) to approximate the mean behavior.

OCP
𝜆𝑠

∗(𝑡)

Quantization 
𝑢∗(𝑡)

𝑡1
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Thank you for watching ☺!
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