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Introduction

 We will refer to the variables interacting with the sensors as Auxiliary variables (¢).
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Introduction

The main question we attempt to answer in the paper is:

How can we schedule and select sensors with discrete
measurements for continuously evolving signals while considering
auxiliary variables?
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Setup

We consider a State-Space Model (SSM) for the signal of interest:

dx = A Oxdt + oG t)dW,  xg ~ N (g, Zo),
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Setup

We consider a State-Space Model (SSM) for the signal of interest:

dx = AE, t)x dt + o(E t) dW, xo ~ N (o, Zo),

with measurements from sensor s at time t;:

yS(t) = Cs(E(t), t)x(t) + v (L), t),  vSE(E), t) ~ M (0, Rs(E(t), t))

We aim to estimate the state x(t) given the available measurements up
untiltime t: Continuous-Discrete Kalman filter

Regression with Gaussian Processes for many covariance functions is
equivalent to Kalman filtering and then smoothing [*].

[*] See for example: Hartikainen, Jouni, and Simo Sarkka. "Kalman filtering and smoothing
solutions to temporal Gaussian process regression models." 2070 IEEE international

workshop on machine learning for signal processing. IEEE, 2010.
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Setup

For the auxiliary variables:

dt,, s Ng(0)
2P f &) +Z gs(g,u,t)z_ 5.5,
dt s=1 =1

A&y
i = fu@uu, t),

dt .
ngp]
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Setup

For the auxiliary variables:

dc S Ns(t)
Perturbed by measurements d—tp =G ut) + Z gs(& u,t) Z 8;s,
s=1 i=1 '
dg
d_tu = fuu,t),
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Setup

For the auxiliary variables:

ds S Ns(t)
Perturbed by measurements d—tp =G ut) + Z gs(& u,t) Z 8;s,
s=1 i=1 '
dg
d_tu = fuu,t),
_ ¢
$=1e,
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Setup

Number of measurements from sensor s

For the auxiliary variables: /

ds S N (t)
Perturbed by measurements d—f =G ut) + Z gs(&u, t) Z 8¢s.,
s=1 i=1 .
dg
d_: - fu(gu; u, t)! \
& = ?‘] Dirac delta (measurement event)
p

g

&pis stored energy
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Setup

For the auxiliary variables:

d, _

Perturbed by measurements s

Unperturbed by measurements
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Setup

For the auxiliary variables:

dEp S Ns(t)
Perturbed by measurements  —= = f,(§u,t) + Z gs(& 1, t) z 8¢s,
dt d s=1 i=1 L
Unperturbed by measurements % = f, (&, 1,1),
Su
f =
$p
represents inputs/actions to the auxiliary dynamics.
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Summary of the Methods

 We model the measurements events to be according to a Poisson process with variable rates (4. (t) for
Sensors).

* This allows us to obtain continuously differentiable upper bounds in the rates on the mean covariance matrix
for the Kalman filter along the mean auxiliary state [*].

. As(®)
[*] assuming that: M
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Summary of the Methods

 We model the measurements events to be according to a Poisson process with variable rates (4. (t) for
Sensors).

* This allows us to obtain continuously differentiable upper bounds in the rates on the mean covariance matrix
forthe Kalman filter along the mean auxiliary state [*].

L As(®)
[*] assuming that: /\H_/\
d S Ng(t)
Lo fEunty. gEuoy b 11111 e

fp (E; u, t) = Up (fur u, t)fp + ,Bp (fur u, t) . .
We also provide approximate

gs(&u, t) = as(&yu, t)é), + Bs (&, u, t) solutions for other assumptions
in the paper
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Summary of the Methods

We model the measurements events to be according to a Poisson process with variable rates (4. (t) for
Sensors).

This allows us to obtain continuously differentiable upper bounds in the rates on the mean covariance matrix
for the Kalman filter along the mean auxiliary state.

Using the bounds, we formulate an optimal control problem (OCP) to optimize over the rates for each sensor
(As(t)) and the inputs/actions (u(t)) for a horizon of T.
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Summary of the Methods

 We model the measurements events to be according to a Poisson process with variable rates (4. (t) for
Sensors).

* This allows us to obtain continuously differentiable upper bounds in the rates on the mean covariance matrix
for the Kalman filter along the mean auxiliary state.

* Usingthe bounds, we formulate an optimal control problem (OCP) to optimize over the rates for each sensor
(As(t)) and the inputs/actions (u(t)) for a horizon of T.

Using optimal quantization, we derive a deterministic rule to select the measurement times for each sensor
based on the corresponding optimized rate (1;(t)) to approximate the mean behavior.
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Experiments
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Experiments

Covariance Trace

Method Mean Std Maximum
Optimized 1.90221 0.3406 2.94496
M-Optimized 1.92461 0.364315 3.00148
Greedy 2.60768 0.487677 3.21866
Random 2.2275 0.469839 2.9206
Energy n
Method Mean Std Maximum
Optimized 21.5435 10.1709 50.0
M-Optimized 22.3106 10.1279 50.0
Greedy -1.67343 14.0586 50.0
Random -17.4417 31.3537 50.0
Degradation ((; + (2)

Method Mean Std Maximum
Optimized 0.0905529 0.0654335 0.185626

M-Optimized 0.0845751 0.0688232  0.195288

Greedy 0.193289  0.081316  0.232247
Random 0.792406  0.557986 1.57578
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Experiments
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Experiments

Spatial Trajectory with Energy

Efergy: 50.0
0.6
0.4
>
0.2
@ FRobot
Heading
0.0 - [Z—- True Target
Estimate
0.0 0.2 0.4 0.6 0.8 1.0 1.2
X
PIONEER CENTRE FOR s ICM L
International Conference
On Machine Learning

ARTIFICIAL INTELLIGENCE

AD

E"‘\

o \
<
’

v w

-l oA

A »



Thank you for watching ©!
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