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Motivation & Challenges
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Why Distributional RL?

• Distributional RL (DistRL) models the entire distribution of
returns, not just the expectation.

• Offers richer insight into uncertainty, such as variance,
skewness, and quantiles.
• Facilitates safer and more effective decision-making by explicitly

considering risk.

Figure: Distributional Bellman Update

Bellemare, Marc G., Will Dabney, and Rémi Munos. ”A distributional perspective on reinforcement learning.” International
conference on machine learning. PMLR, 2017.
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Two challenges in distRL

1 Infinite-dimensionality

• Return distributions contain an infinite amount of information.

• We must approximate it using a finite number of parameters or
statistical functionals.

• However, not all statistical functionals can be exactly learned
through the Bellman operator, as the meaning is not preserved.

2 Online distributional update

• Decoupling the policy update and the distribution estimation via
additional rollouts is sample-inefficient.

• Limited rollouts inevitably introduce approximation errors into the
estimated distribution.

“Can we design a representation that is both exactly learned and
provably sample-efficient?”
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Backgrounds
1 Bellman Closedness
2 Bellman Unbiasedness
3 Statistical Functional Bellman Completeness (SFBC)
4 Statistical Functional Least Square Value Iteration (SF-LSVI)
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Statistical Functional, Sketch

Statistical Functional, Sketch; [Bellemare, 2023]
A statistical functional is a mapping from a probability distribution to
a real value ψ : P(R)→ R. A sketch is a vector-valued function
ψ1:N : P(R)→ RN specified by an N-tuple where each component is a
statistical functional,

ψ1:N(·) = (ψ1(·), · · · , ψN(·)).

Cho et al. Bellman Unbiasedness 6 / 22



Bellman Closedness (BC)

Bellman Closedness; [Rowland, 2019]
A sketch ψ1:N is Bellman closed if there exists an operator
Tψ1:N : ISψ1:N

→ ISψ1:N
such that

ψ1:N(T η̄) = Tψ1:Nψ1:N(η̄) for all η̄ ∈P(R)S

which is closed under a distributional Bellman operator
T : P(R)S →P(R)S .
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Bellman Closedness (BC)

Theorem ([Rowland, 2019])
The only finite sets of statistics of the form ψ(η̄) = EZ∼η̄[h(Z )] that are
Bellman closed are given by the collections of ψ1, . . . , ψN where its
linear span {

∑N
n=0 αnψn| αn ∈ R ,∀N} is equal to the set of exponential

polynomial functionals {η → EZ∼η[Z l exp (λZ )]| l = 0,1, . . . ,L, λ ∈ R},
where ψ0 is the constant functional equal to 1.
In discount setting, it is equal to the linear span of the set of moment
functionals {η → EZ∼η[Z l ]| l = 0,1, . . . ,L} for some L ≤ N.

Although both the first and second moments are Bellman closed, the
variance is nonlinear.
As a result, its Bellman closedness cannot be determined by the
existing theory, which only applies to linear statistical functionals.
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Bellman Closedness (BC)

Theorem
Quantile functional cannot be Bellman closed under any additional
sketch.

Along with a technical clarification of the proof in [Rowland, 2019], we
provide an improved version of the proof.

Theorem
Maximum and minimum functional are nonlinear and Bellman closed.

• Tψmax

(
ψmax(η̄(s))

)
= maxs′∼P(·|s,a)

(
r + ψmax

(
η̄(s′)

))
.

• Tψmin

(
ψmin(η̄(s))

)
= mins′∼P(·|s,a)

(
r + ψmin

(
η̄(s′)

))
.
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Key Concepts
1 Bellman Closedness
2 Bellman Unbiasedness
3 Statistical Functional Bellman Completeness (SFBC)
4 Statistical Functional Least Square Value Iteration (SF-LSVI)
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Bellman Unbiasedness (BU)

Bellman Closedness
• Exact learnability
• Exact update in finite

dimensional space.

Bellman Unbiasedness
• Provable efficiency
• Unbiased update using

sampled sketches
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Bellman Unbiasedness (BU)

Bellman Unbiasedness
A sketch ψ(= ψ1:N) is Bellman unbiased if a vector-valued estimator
ϕψ = ϕψ(ψ(·), · · · , ψ(·)) : (ISψ )k → ISψ exists where the sketch of
expected distribution can be unbiasedly estimated by ϕψ using the k
sampled sketches from the sample distribution , i.e.,

Es′i ∼P

[
ϕψ

(
ψ
(
(Br )#η̄(s′

1)
)
, · · · , ψ

(
(Br )#η̄(s′

k )
)

︸ ︷︷ ︸
k sampled sketches from sample distribution T̂ψψ(η̄(s))

)]
= ψ

(
(Br )#Es′∼P(·|s,a)[η̄(s

′)]
)
.

Example) Mean-variance sketch

(µ̄, σ̄2) = ϕ(µ,σ2)

(
(µ̂1, σ̂

2
1), · · · , (µ̂k , σ̂

2
k )
)

=
(1

k

k∑
i=1

µ̂i ,
1
k

k∑
i=1

(µ̂i −
1
k

k∑
j=1

µ̂j)
2 + σ̂2

i

)
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Bellman Unbiasedness (BU)

Lemma
Let Fη̄ be a CDF of the probability distribution η̄ ∈Pψ(R)S . Then a
sketch is Bellman unbiased if and only if the sketch is homogeneous
over Pψ(R)S of degree k, i.e., there exists some vector-valued
function h = h(x1, · · · , xk ) : X k → RN such that

ψ(η̄) =

∫
· · ·

∫
h(x1, · · · , xk )dFη̄(x1) · · · dFη̄(xk ).

Example) Variance is nonlinear but homogeneous of degree 2.

Var(η̄) = EZ1∼η̄[(Z1 − EZ2∼η̄[Z2])
2]

= EZ1,Z2∼η̄[Z
2
1 − 2Z1Z2 + Z 2

2 ] = EZ1,Z2∼η̄[h(Z1,Z2)]
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Bellman Unbiasedness (BU)

Theorem
The only finite statistical functionals that are both Bellman unbiased
and closed are given by the collections of ψ1, . . . , ψN where its linear
span {

∑N
n=0 αnψn| αn ∈ R , ∀N} is equal to the set of exponential

polynomial functionals {η → EZ∼η[Z l exp (λZ )]| l = 0,1, . . . ,L, λ ∈ R},
where ψ0 is the constant functional equal to 1.
In discount setting, it is equal to the linear span of the set of moment
functionals {η → EZ∼η[Z l ]| l = 0,1, . . . ,L} for some L ≤ N.
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Venn-Diagram of Statistical Functional Classes
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Assumption & Algorithm
1 Bellman Closedness
2 Bellman Unbiasedness
3 Statistical Functional Bellman Completeness (SFBC)
4 Statistical Functional Least Square Value Iteration (SF-LSVI)
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Statistical Functional Bellman Completeness

Distributional Bellman Completeness (DistBC)
For any distribution η̄ : S →P([0,H]) and h ∈ [H], there exists
fη̄ ∈ H (⊆ F∞) which satisfies

fη̄(s,a) = (Brh)#[Pη̄](s,a) ∀(s,a) ∈ S ×A.

⇓ (Relax the representation space to statistical functionals)

Statistical Functional Bellman Completeness (SFBC)

For any distribution η̄ : S →P([0,H]) and h ∈ [H], there exists fη̄ ∈ FN

which satisfies

fη̄(s,a) = ψ1:N

(
(Brh)#[Pη̄](s,a)

)
∀(s,a) ∈ S ×A.
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SF-LSVI

Moment least square regression

f̃ k
h,η̄ ← argmin

f∈F

k−1∑
τ=1

H∑
h′=1

( N∑
n=1

f (n)(sτh′ ,aτh′)− ψn

(
(Brτ

h′
)#η̄

k
h+1(s

τ
h′+1)

))2
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SF-LSVI

Theorem
Under SFBC assumption, with probability at least 1− δ, SF-LSVI
achieves a regret bound of

Reg(K ) ≤ 2HdimE(FN ,1/T ) + 4H
√

KH log(1/δ).

→ Compared to previous distRL methods, SF-LSVI achieves a
tighter regret bound under a weaker structural assumption.
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Conclusion

To sum up,
• Bellman Unbiasedness provides a foundation for designing

exactly learnable and provably efficient distRL algorithm.
• We show that only moment-based functionals can be exactly

learned—even among nonlinear statistical functionals.
• SF-LSVI achieves a tighter regret bound under a weaker

assumption, SFBC.
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Thank you!
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