Bellman Unbiasedness: Toward Provably Efficient Distributional Reinforcement Learning with General Value Function Approximation

Taehyun Cho¹ Seungyub Han¹ Seokhun Ju¹ Dohyeong Kim¹ Kyungjae Lee² Jungwoo Lee¹

¹Seoul National University, ²Korea University

ICML June 14, 2025

Motivation & Challenges

Why Distributional RL?

 Distributional RL (DistRL) models the entire distribution of returns, not just the expectation.

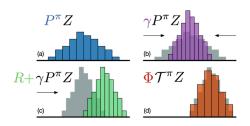


Figure: Distributional Bellman Update

Bellemare, Marc G., Will Dabney, and Rémi Munos. "A distributional perspective on reinforcement learning." International conference on machine learning. PMLR, 2017.

Why Distributional RL?

- Distributional RL (DistRL) models the entire distribution of returns, not just the expectation.
- Offers richer insight into uncertainty, such as variance, skewness, and quantiles.

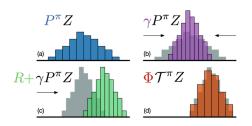


Figure: Distributional Bellman Update

Bellemare, Marc G., Will Dabney, and Rémi Munos. "A distributional perspective on reinforcement learning." International conference on machine learning. PMLR, 2017.

Why Distributional RL?

- Distributional RL (DistRL) models the entire distribution of returns, not just the expectation.
- Offers richer insight into uncertainty, such as variance, skewness, and quantiles.
- Facilitates safer and more effective decision-making by explicitly considering risk.

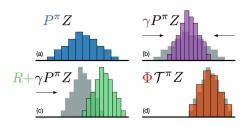


Figure: Distributional Bellman Update

Bellemare, Marc G., Will Dabney, and Rémi Munos. "A distributional perspective on reinforcement learning." International conference on machine learning. PMLR, 2017.

1 Infinite-dimensionality

2 Online distributional update

4/22

- Infinite-dimensionality
 - Return distributions contain an infinite amount of information.
 - We must approximate it using a finite number of parameters or statistical functionals.
 - However, not all statistical functionals can be exactly learned through the Bellman operator, as the meaning is not preserved.

Online distributional update

1 Infinite-dimensionality

- Return distributions contain an infinite amount of information.
- We must approximate it using a finite number of parameters or statistical functionals.
- However, not all statistical functionals can be exactly learned through the Bellman operator, as the meaning is not preserved.

Online distributional update

- Decoupling the policy update and the distribution estimation via additional rollouts is sample-inefficient.
- Limited rollouts inevitably introduce approximation errors into the estimated distribution.

1 Infinite-dimensionality

- Return distributions contain an infinite amount of information.
- We must approximate it using a finite number of parameters or statistical functionals.
- However, not all statistical functionals can be exactly learned through the Bellman operator, as the meaning is not preserved.

Online distributional update

- Decoupling the policy update and the distribution estimation via additional rollouts is sample-inefficient.
- Limited rollouts inevitably introduce approximation errors into the estimated distribution.

"Can we design a representation that is both exactly learned and provably sample-efficient?"

Backgrounds

- Bellman Closedness
- 2 Bellman Unbiasedness
- 3 Statistical Functional Bellman Completeness (SFBC)
- 4 Statistical Functional Least Square Value Iteration (SF-LSVI)

Statistical Functional, Sketch

Statistical Functional, Sketch; [Bellemare, 2023]

A **statistical functional** is a mapping from a probability distribution to a real value $\psi: \mathscr{P}(\mathbb{R}) \to \mathbb{R}$. A **sketch** is a vector-valued function $\psi_{1:N}: \mathscr{P}(\mathbb{R}) \to \mathbb{R}^N$ specified by an *N*-tuple where each component is a statistical functional,

$$\psi_{1:N}(\cdot) = (\psi_1(\cdot), \cdots, \psi_N(\cdot)).$$

Bellman Closedness; [Rowland, 2019]

A sketch $\psi_{1:N}$ is **Bellman closed** if there exists an operator $\mathcal{T}_{\psi_{1:N}}:I_{\psi_{1:N}}^{\mathcal{S}}\to I_{\psi_{1:N}}^{\mathcal{S}}$ such that

$$\psi_{1:N}(\mathcal{T}\bar{\eta}) = \mathcal{T}_{\psi_{1:N}}\psi_{1:N}(\bar{\eta}) \quad \text{for all } \bar{\eta} \in \mathscr{P}(\mathbb{R})^{\mathcal{S}}$$

which is closed under a distributional Bellman operator $\mathcal{T}: \mathscr{P}(\mathbb{R})^{\mathcal{S}} \to \mathscr{P}(\mathbb{R})^{\mathcal{S}}$.

Theorem ([Rowland, 2019])

The only finite sets of statistics of the form $\psi(\bar{\eta}) = \mathbb{E}_{Z \sim \bar{\eta}}[h(Z)]$ that are Bellman closed are given by the collections of ψ_1, \ldots, ψ_N where its linear span $\{\sum_{n=0}^N \alpha_n \psi_n | \alpha_n \in \mathbb{R}, \forall N\}$ is equal to the set of exponential polynomial functionals $\{\eta \to \mathbb{E}_{Z \sim \eta}[Z^I \exp{(\lambda Z)}] | I = 0, 1, \ldots, L, \lambda \in \mathbb{R}\}$, where ψ_0 is the constant functional equal to 1.

In discount setting, it is equal to the linear span of the set of moment functionals $\{\eta \to \mathbb{E}_{Z \sim \eta}[Z^I] | I = 0, 1, \dots, L\}$ for some $L \leq N$.

Theorem ([Rowland, 2019])

The only finite sets of statistics of the form $\psi(\bar{\eta}) = \mathbb{E}_{Z \sim \bar{\eta}}[h(Z)]$ that are Bellman closed are given by the collections of ψ_1, \ldots, ψ_N where its linear span $\{\sum_{n=0}^N \alpha_n \psi_n | \alpha_n \in \mathbb{R}, \forall N\}$ is equal to the set of exponential polynomial functionals $\{\eta \to \mathbb{E}_{Z \sim \eta}[Z^l \exp{(\lambda Z)}] | l = 0, 1, \ldots, L, \lambda \in \mathbb{R}\}$, where ψ_0 is the constant functional equal to 1.

In discount setting, it is equal to the linear span of the set of moment functionals $\{\eta \to \mathbb{E}_{Z \sim \eta}[Z^I] | I = 0, 1, \dots, L\}$ for some $L \leq N$.

Although both the first and second moments are Bellman closed, the variance is **nonlinear**.

As a result, its Bellman closedness cannot be determined by the existing theory, which only applies to **linear** statistical functionals.

Theorem

Quantile functional cannot be Bellman closed under any additional sketch.

Along with a technical clarification of the proof in [Rowland, 2019], we provide an improved version of the proof.

Theorem

Quantile functional cannot be Bellman closed under any additional sketch.

Along with a technical clarification of the proof in [Rowland, 2019], we provide an improved version of the proof.

Theorem

Maximum and minimum functional are nonlinear and Bellman closed.

$$\bullet \ \, \mathcal{T}_{\psi_{\mathsf{max}}}\Big(\psi_{\mathsf{max}}(\bar{\eta}(\boldsymbol{s}))\Big) = \mathsf{max}_{\boldsymbol{s}' \sim \mathbb{P}(\cdot \mid \boldsymbol{s}, \boldsymbol{a})}\left(r + \psi_{\mathsf{max}}\big(\bar{\eta}(\boldsymbol{s}')\big)\right).$$

$$\bullet \ \mathcal{T}_{\psi_{\min}}\Big(\psi_{\min}(\bar{\eta}(\boldsymbol{s}))\Big) = \min_{\boldsymbol{s}' \sim \mathbb{P}(\cdot|\boldsymbol{s},\boldsymbol{a})} \Big(\boldsymbol{r} + \psi_{\min}\big(\bar{\eta}(\boldsymbol{s}')\big)\Big).$$

Key Concepts

- Bellman Closedness
- 2 Bellman Unbiasedness
- 3 Statistical Functional Bellman Completeness (SFBC)
- 4 Statistical Functional Least Square Value Iteration (SF-LSVI)

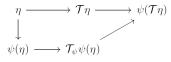


Figure 3. Bellman Closedness

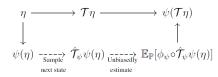


Figure 4. Bellman Unbiasedness

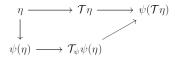


Figure 3. Bellman Closedness

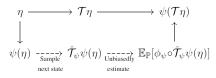


Figure 4. Bellman Unbiasedness

Bellman Closedness

- Exact learnability
- Exact update in finite dimensional space.

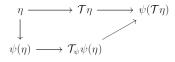


Figure 3. Bellman Closedness

Bellman Closedness

- Exact learnability
- Exact update in finite dimensional space.

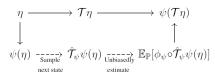


Figure 4. Bellman Unbiasedness

Bellman Unbiasedness

- Provable efficiency
- Unbiased update using sampled sketches

Bellman Unbiasedness

A sketch $\psi(=\psi_{1:N})$ is **Bellman unbiased** if a vector-valued estimator $\phi_{\psi} = \phi_{\psi}(\psi(\cdot), \cdots, \psi(\cdot)) : (I_{\psi}^{\mathcal{S}})^k \to I_{\psi}^{\mathcal{S}}$ exists where the sketch of expected distribution can be unbiasedly estimated by ϕ_{ψ} using the k sampled sketches from the sample distribution , i.e.,

$$\mathbb{E}_{\mathbf{S}_{1}^{\prime} \sim \mathbb{P}} \Bigg[\phi_{\psi} \Bigg(\underbrace{\psi \Big((\mathcal{B}_{r})_{\#} \bar{\eta}(\mathbf{S}_{1}^{\prime}) \Big), \cdots, \psi \Big((\mathcal{B}_{r})_{\#} \bar{\eta}(\mathbf{S}_{k}^{\prime}) \Big)}_{k \text{ sampled sketches from sample distribution } \hat{\tau}_{\psi} \psi(\bar{\eta}(\mathbf{s}))} \Bigg) \Bigg] = \psi \Big((\mathcal{B}_{r})_{\#} \mathbb{E}_{\mathbf{S}^{\prime} \sim \mathbb{P}(\cdot | \mathbf{s}, \mathbf{a})} [\bar{\eta}(\mathbf{S}^{\prime})] \Big).$$

Example) Mean-variance sketch

$$(\bar{\mu}, \bar{\sigma}^2) = \phi_{(\mu, \sigma^2)} \Big((\hat{\mu}_1, \hat{\sigma}_1^2), \cdots, (\hat{\mu}_k, \hat{\sigma}_k^2) \Big)$$
$$= \Big(\frac{1}{k} \sum_{i=1}^k \hat{\mu}_i, \ \frac{1}{k} \sum_{i=1}^k (\hat{\mu}_i - \frac{1}{k} \sum_{i=1}^k \hat{\mu}_i)^2 + \hat{\sigma}_i^2 \Big)$$

Cho et al. Bellman Unbiasedness 12/22

Lemma

Let $F_{\bar{\eta}}$ be a CDF of the probability distribution $\bar{\eta} \in \mathscr{P}_{\psi}(\mathbb{R})^{\mathcal{S}}$. Then a sketch is Bellman unbiased if and only if the sketch is **homogeneous** over $\mathscr{P}_{\psi}(\mathbb{R})^{\mathcal{S}}$ of degree k, i.e., there exists some vector-valued function $h = h(x_1, \cdots, x_k) : \mathcal{X}^k \to \mathbb{R}^N$ such that

$$\psi(\bar{\eta}) = \int \cdots \int h(x_1, \cdots, x_k) dF_{\bar{\eta}}(x_1) \cdots dF_{\bar{\eta}}(x_k).$$

Example) Variance is nonlinear but homogeneous of degree 2.

$$\begin{split} & \text{Var}(\bar{\eta}) = \mathbb{E}_{Z_1 \sim \bar{\eta}}[(Z_1 - \mathbb{E}_{Z_2 \sim \bar{\eta}}[Z_2])^2] \\ & = \mathbb{E}_{Z_1, Z_2 \sim \bar{\eta}}[Z_1^2 - 2Z_1Z_2 + Z_2^2] = \mathbb{E}_{Z_1, Z_2 \sim \bar{\eta}}[h(Z_1, Z_2)] \end{split}$$

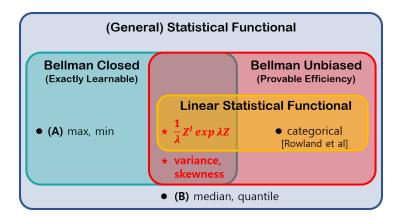
Theorem

The only finite statistical functionals that are both Bellman unbiased and closed are given by the collections of ψ_1,\ldots,ψ_N where its linear span $\{\sum_{n=0}^N \alpha_n\psi_n|\ \alpha_n\in\mathbb{R}\ ,\forall N\}$ is equal to the set of exponential polynomial functionals $\{\eta\to\mathbb{E}_{Z\sim\eta}[Z^I\exp{(\lambda Z)}]|\ I=0,1,\ldots,L,\lambda\in\mathbb{R}\}$, where ψ_0 is the constant functional equal to 1.

In discount setting, it is equal to the linear span of the set of moment functionals $\{\eta \to \mathbb{E}_{Z \sim \eta}[Z^I] | I = 0, 1, \dots, L\}$ for some $L \leq N$.

14/22

Venn-Diagram of Statistical Functional Classes



Assumption & Algorithm

- Bellman Closedness
- 2 Bellman Unbiasedness
- 3 Statistical Functional Bellman Completeness (SFBC)
- 4 Statistical Functional Least Square Value Iteration (SF-LSVI)

Statistical Functional Bellman Completeness

Distributional Bellman Completeness (DistBC)

For any distribution $\bar{\eta}: \mathcal{S} \to \mathscr{P}([0, H])$ and $h \in [H]$, there exists $f_{\bar{\eta}} \in \mathcal{H} (\subseteq \mathcal{F}^{\infty})$ which satisfies

$$f_{ar{\eta}}(s,a) = (\mathcal{B}_{r_h})_{\#}[\mathbb{P}ar{\eta}](s,a) \quad orall (s,a) \in \mathcal{S} imes \mathcal{A}.$$

Statistical Functional Bellman Completeness

Distributional Bellman Completeness (DistBC)

For any distribution $\bar{\eta}: \mathcal{S} \to \mathscr{P}([0, H])$ and $h \in [H]$, there exists $f_{\bar{\eta}} \in \mathcal{H} \ (\subseteq \mathcal{F}^{\infty})$ which satisfies

$$f_{ar{\eta}}(oldsymbol{s},oldsymbol{a}) = (\mathcal{B}_{f_{ar{\eta}}})_{\#}[\mathbb{P}ar{\eta}](oldsymbol{s},oldsymbol{a}) \quad orall (oldsymbol{s},oldsymbol{a}) \in \mathcal{S} imes \mathcal{A}.$$

(Relax the representation space to statistical functionals)

Statistical Functional Bellman Completeness (SFBC)

For any distribution $\bar{\eta}: \mathcal{S} \to \mathscr{P}([0, H])$ and $h \in [H]$, there exists $f_{\bar{\eta}} \in \mathcal{F}^N$ which satisfies

$$f_{\bar{\eta}}(s,a) = \psi_{1:N} \Big((\mathcal{B}_{r_h})_{\#} [\mathbb{P}\bar{\eta}](s,a) \Big) \quad \forall (s,a) \in \mathcal{S} \times \mathcal{A}.$$

Algorithm 1 Statistical Functional Least Square Value Iteration (SF-LSVI(δ))

```
Input: failure probability \delta \in (0,1) and the number of episodes K
   1: for episode k = 1, 2, ..., K do
             Receive initial state s_1^k
            Initialize \psi_{1:N}(\bar{\eta}_{H+1}^{k}(\cdot)) \leftarrow \mathbf{0}^{N}
            for step h = H, H - 1, ..., 1 do
                \mathcal{D}_{h}^{k} \leftarrow \left\{ s_{h'}^{\tau}, a_{h'}^{\tau}, \psi_{1:N} \left( (\mathcal{B}_{r_{h'}^{\tau}})_{\#} \bar{\eta}_{h+1}^{k} (s_{h'+1}^{\tau}) \right) \right\}_{(\tau,h') \in [k-1] \times [H]}
  5:
                                                                                                                                                                                                       // Data collection
                 \tilde{f}_{h}^{k} = \arg \min_{f \in \mathcal{F}^{N}} ||f||_{\mathcal{D}^{k}}
                                                                                                                                                                                       // Distribution Estimation
                b_t^k(\cdot, \cdot) \leftarrow w^{(1)}((\mathcal{F}^N)_t^k, \cdot, \cdot)
                Q_h^k(\cdot,\cdot) \leftarrow \min\{(\tilde{f}_{h,\pi}^k)^{(1)}(\cdot,\cdot) + b_h^k(\cdot,\cdot), H\}
                 \pi_k^k(\cdot) = \arg \max_{a \in A} Q_k^k(\cdot, a), V_k^k(\cdot) = Q_k^k(\cdot, \pi_k^k(\cdot))
                                                                                                                                                                                              // Optimistic planning
                 \psi_1(\eta_h^k(\cdot,\cdot)) \leftarrow Q_h^k(\cdot,\cdot), \ \psi_{2:N}(\eta_h^k(\cdot,\cdot)) \leftarrow \left(\min\{(\tilde{f}_{h,\bar{\eta}}^k)^{(n)}(\cdot,\cdot),H\}\right)_{n\in[0:N]}
 10.
                 \psi_1\left(\bar{\eta}_h^k(\cdot)\right) \leftarrow V_h^k(\cdot), \ \psi_{2:N}\left(\bar{\eta}_h^k(\cdot)\right) \leftarrow \psi_{1:N}\left(\eta_h^k(\cdot, \pi_h^k(\cdot))\right)_{n \in [2,N]}
11:
 12.
            for h = 1, 2, ..., H do
                 Take action a_{L}^{k} \leftarrow \pi_{L}^{k}(s_{L}^{k})
13:
                 Observe reward r_k^k(s_k^k, a_k^k) and get next state s_{k+1}^k.
 14:
```

Moment least square regression

$$\tilde{f}_{h,\bar{\eta}}^k \leftarrow \arg\min_{f \in \mathcal{F}} \sum_{\tau=1}^{k-1} \sum_{h'=1}^H \Big(\sum_{n=1}^N f^{(n)}(\boldsymbol{s}_{h'}^{\tau}, \boldsymbol{a}_{h'}^{\tau}) - \psi_n \Big((\mathcal{B}_{r_{h'}^{\tau}})_{\#} \bar{\eta}_{h+1}^k(\boldsymbol{s}_{h'+1}^{\tau}) \Big) \Big)^2$$

SF-LSVI

Theorem

Under SFBC assumption, with probability at least $1 - \delta$, SF-LSVI achieves a regret bound of

$$Reg(K) \leq 2Hdim_E(\mathcal{F}^N, 1/T) + 4H\sqrt{KH\log(1/\delta)}.$$

SF-LSVI

Theorem

Under SFBC assumption, with probability at least 1 $-\delta$, SF-LSVI achieves a regret bound of

$$Reg(K) \leq 2Hdim_E(\mathcal{F}^N, 1/T) + 4H\sqrt{KH\log(1/\delta)}.$$

Table 1. Comparison for different methods under distributional RL framework. \mathcal{H} represents a subspace of infinite-dimensional space \mathcal{F}^{∞} . To bound the eluder dimesion d_E , Wang et al. (2023) and Chen et al. (2024) assumed the discretized reward MDP.

Algorithm	Regret	Eluder dimension $d_{\cal E}$	Bellman Completeness	MDP assumption	Finite Representation	Exactly Learnable
O-DISCO (Wang et al., 2023)	$\tilde{\mathcal{O}}(\operatorname{poly}(d_E H)\sqrt{K})$	$\dim_E(\mathcal{H},\epsilon)$	distributional BC	discretized reward, small-loss bound	×	х
V-EST-LSR (Chen et al., 2024)	$\tilde{\mathcal{O}}(d_E H^2 \sqrt{K})^{\;2}$	$\dim_E(\mathcal{H},\epsilon)$	distributional BC	discretized reward, lipschitz continuity	×	х
SF-LSVI [Ours]	$\tilde{O}(d_E H^{\frac{3}{2}} \sqrt{K})$	$\dim_E(\mathcal{F}^N,\epsilon)$	statistical functional BC	none	1	✓

ightarrow Compared to previous distRL methods, SF-LSVI achieves a **tighter** regret bound under a **weaker** structural assumption.

Conclusion

To sum up,

- Bellman Unbiasedness provides a foundation for designing exactly learnable and provably efficient distRL algorithm.
- We show that only moment-based functionals can be exactly learned—even among nonlinear statistical functionals.
- SF-LSVI achieves a tighter regret bound under a weaker assumption, SFBC.

Thank you!

References

Mark Rowland (2019)

Statistics and samples in distributional reinforcement learning

Marc G. Bellemare (2023)

Distributional reinforcement learning

Kaiwen Wang (2023)

The Benefits of Being Distributional: Small-Loss Bounds for Reinforcement Learning

Yu Chen (2024)

Provable Risk-Sensitive Distributional Reinforcement Learning with General Function Approximation