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Average-Reward Markov Decision Process

Markov Decision Process (S,A,P, r).

• S, State space

• A, Action space

• P : S ×A → M(S), Transition probability

• r : S ×A → ℝ, Reward
• π : S → M(A), Policy

Define average-reward of a given policy as

gπ(s) = lim inf
T→∞

1

T
𝔼π

[
T−1∑
t=0

r(st, at) | s0 = s

]

and Bellman operator as

TV (s) = sup
a∈A

{
r(s, a) + 𝔼s′∼P(· | s,a) [V (s′)]

}
.
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Weakly communicating MDP

Multichain = General

Weakly Communicating

Unichain

Figure: Unichain ⊂ Weakly Communicating ⊂ Multichain

In weakly communicating MDP,4 Bellman equation is defined as

max
a∈A

{
r(s, a) +

∑
s′∈S

P (s′ | s, a)h(s′)

}
= h(s) + g⋆.

4The MDP is said to be weakly communicating if there is a set of states where
each state in the set is accessible from every other state in that set under some policy,
plus a possibly empty set of states that are transient for all policies.
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Solving MDP with Generative model

Generative model provides independent samples of the next state for any
given initial state and action (Reward is known).5

In average-reward MDP setup, model-free method exhibits a gap with
respect to the lower bound. Furthermore, most methods require a priori
bound on the span seminorm of the bias vector h⋆.

5Kearns & Singh, 1998
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Framework I: Anc-VI with span seminorm

The Anchored Value Iteration is

Qk = (1− βk)Q
0 + βkTQ

k−1 (Anc-VI)

We call the (1− βk)Q
0 term the anchor term since it serves to pull the

iterates toward the starting point Q0.

In weakly communicating MDP, we can show that Anc-VI exhibits

∥g⋆ − gπk∥∞ ≤ ∥T (Qk)−Qk∥sp ≤ 4
k+1∥Q

0 −Q∗∥sp.
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Framework II: Estimating T (Qk) by recursive sampling6

To approximate T k ≈ T (Qk), one can use naive sampling by collecting
samples {sj}mk

j=1 ∼ P(·|s, a):

T k(s, a) = r(s, a) + 1
mk

∑mk

j=1 max
a′∈A

Qk(sj , a
′).

Instead, we use recursive sampling by approximating the difference
T (Qk)− T (Qk−1) and adding it T k−1:

T k(s, a) = T k−1(s, a) + 1
mk

∑mk

j=1(max
a′∈A

Qk(sj , a
′)−max

a′∈A
Qk−1(sj , a

′)).

6Jin et al, 2024, Nguyen et al, 2017
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Stochastic Anchored Value Iteration

Algorithm 1 SAVIA(Q0, n, ε, δ)

Input: Q0∈ ℝS×A ;n ∈ ℕ ; ε > 0 ; δ ∈ (0, 1)
α = ln(2|S||A|(n+1)/δ)
ck = 5(k + 2) ln2(k + 2) ; βk = k/(k + 2)
T−1 = r ; h−1 = 0
for k = 0, . . . , n do

Qk = (1−βk)Q
0 + βk T

k−1

hk = maxA(Q
k)

dk = hk − hk−1

mk = max{⌈α ck∥dk∥2sp/ε2⌉, 1}
Dk = sample(dk,mk)
T k = T k−1 +Dk

end for
πn(s) ∈ argmaxa∈A Qn(s, a) (∀s ∈ S)
Output: (Qn, Tn, πn)
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SAVIA+

Algorithm 2 SAVIA+(Q0, ε, δ)

Input: Q0∈ ℝS×A ; ε > 0 ; δ ∈ (0, 1)
for i = 0, 1, . . . do

Set ni = 2i, δi = δ/ci.
(Qni , Tni , πni) = SAVIA(Q0, ni, ε, δi)

until ∥Tni −Qni∥sp ≤ 14 ε
Output: Qni , Tni , πni

We use doubling trick7 and stopping rule based on the empirical Bellman
error.

7Auer et al, 1995; Besson & Kaufmann, 2018
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Sample Complexity of SAVIA+

Corollary
Assume r(s, a) ∈ [0, 1] for all (s, a) ∈ S ×A, and ∥h∗∥sp ≥ 1. Let
(QN , TN , πN ) be the output of SAVIA+(Q0, ε/16, δ) with Q0 = 0 and
ε ≤ 1. Then, with probability at least 1− δ we have

∥g∗ − gπN ∥∞ ≤ ∥T (QN )−QN∥sp ≤ ε,

with sample and time complexity Õ
(
|S||A|∥h∗∥2sp/ε2

)
.
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Summary

Our model-free algorithm SAVIA+ achieve sample and time complexity
Õ(|S||A|∥h∗∥2sp/ε2) which match the lower bound up to a factor ∥h∗∥sp.

To the best of our knowledge, SAVIA+ attains the best complexity
among model-free methods, and furthermore, it requries no prior
knowledge in weakly communicating MDP.

We also study expected sample complexity and extended this framework
to discounted MDPs.
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