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To understand contrastive learning, we analyze the embeddings of positive and negative pairs through the lens of cosine similarity. In full-batch settings, perfect alignment of positive
pairs is unattainable when the similarities of negative pairs fall below a threshold. This misalignment can be mitigated by incorporating within-view negative pairs into the loss. In mini-
batch settings, smaller batch sizes lead to the increased variance in the similarities of negative pairs—a distinctive characteristic absent in full-batch settings and a potential contributor
to performance degradation in mini-batch settings. To explore this, we introduce an auxiliary loss that reduces this variance, leading to improved performance in small-batch settings.

Contrastive Learning (CL)

In CL, a normalized encoder f € R is trained so that:

« embeddings of positive pairs (ui, Vi) = (f(xi),f(yl-)), where
X; and y; are augmented views of the same instance, are
mapped into similar embeddings (i.e., u; & v,),

« negative pairs (u,, Vj) where [ # j are pushed apart.

Two formulations of contrastive losses used in practice.
Def.3.1. The InfoNCE-Based Loss Zjnfo-sym (U, V) :
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for some constants ¢, ¢, € {0,1},
where ¢ and y are some convex and increasing functions.
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Def.3.2. The Independently Additive Loss Zjng-add(U, V) :
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for some constants ¢, ¢, € {0,1},

where ¢ : concave, increasing, and i/ : convex, increasing.
Ex. SigLIP
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Negative pair considered in the loss formulations, by (¢, ¢,).

Each grid shows all possible pairs of embeddings in U and V.
Blue-striped reg|ons represent negative palrs included in the loss.
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Cosine Similarity of Embeddings

Similarities between embeddings of a positive / negative pair.
Def.4.1. The positive-pair similarity for the encoder f'is
Spos([) = [COTF(y) for (%,¥) ~ Prog:
and the negative-pair similarity for the encoder f'is
Snt‘:g(f) :f(X)Tf(y) for (X, Y) ~ ﬁneg'

Three examples of 8 embeddings.

Inall cases, s,,,.(/) = | and E[speq( /)] = — 1/3.

However, the variance of negative-pair similarities differs.

(a) Var[sneg(.f)] =8/9 (b) Var[sneg(f)] =2/9 (c) V'drlsneg(f)] =0

Embedding Learned in Full-Batch CL

Thm.5.2. For any normalized encoder f,
Elspos(/)1 <1+ ([E[Sneg(.f)]+1/(n - 1)),
where n is the size of the training dataset.
1 Excessive separation of negative pairs in full-batch CL:

When the average of negative-pair similarities drops below
—1/(n—1), positive pairs cannot be fully aligned (Elspos(/)1<1).
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Define the optimal encoder as f*:=argrninf[E [Q(U, V)].
Thm.5.3. If we use the loss of Zjg-adq(U,V) with
(c,00) =(1,0)and ¢’ (1) < yw'(—=1/(n — 1)), then

Spos(./.*) <1 and sneg(f*) <—=1/(n-1).
Thm.5.1. If we use the loss of (1) ginfo_sym (U,V) or (2
Zind-add (U, V) with (¢}, ¢;) € {(0,1), (1,1)}, then

spos(f*) =1 and Sneg(f*) =—1/(n-1).

Including the within-view negative pairs (by set ¢, = 1 of
Zinfo-sym (U, V)) mitigates the misalignment of positive pairs.
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Embedding Learned in Mini-Batch CL

For the batch size m, define the mini-batch optimal encoder as
fhateh = argminE| Z(U, V) + = + Z(U,. V) |,
f

where UkE[b] Uk = U, Uke[b] Vk = V, and |Uk| = |Vk| = m.
Thm.5.5. If we use the loss of (1) Zinfo-sym (U, V) or (2)
Sfind-add (U, V) with (Cl, 62) € {(0,1),(1,1)}, then

Spos(fbatch) = I ElSneg(fpaten)] = — 1/(n=1),

and  Var[Speg(fpaten)] = O(1/m).

I Excessive separation of negative pairs in mini-batch CL:
The effect of using mini-batch is in the increased variance of
negative-pair similarities (Var[sneg(f'gatch)] = 0(1/m)), caused
by stronger separation among negative pairs within each batch.
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Def.5.7. For the batch size m, define the auxiliary loss as

1 1
3VRNS(Uk,Vk):=— 2 <ulij+_>2.
mim=1) n—1

: . We introduce an auxiliary loss term Zyrns(U, V) which
1 reduces the variance of negative-pair similarities.
‘
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Empirical Validation

Excessive Separation of Negative Pairs in mini-batch CL
ResNet-18 on CIFAR-10, varying batch sizes.

Variance of negative-pair similarities

Batch size

SimCLR SimCLR + Ours
32 0.1649 0.1008
64 0.1505 0.0952
128 0.1444 0.0929
256 0.1404 0.0921
512 0.1396 0.0917

Effect of Variance Reduction on Classification Performance
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