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TL; DR

Wepropose a novel conformal anomaly detectionmethod for event sequences, which combines
two newly designed non‐conformity scores with provably valid p‐values for hypothesis testing.

Problem StatementApplication: Anomaly detection
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[Shchur, Türkmen, Januschowski, Gasthaus, Günnemann, NeurIPS 2021] 

Normal data Is a new sequence
normal or anomalous?

Modeling Continuous-time Event Data with Temporal Point Processes | Oleksandr Shchur

Figure 1. An illustration of anomaly detection in event sequences. Source: [1].

Anomaly detection in event sequences is a crucial task in safety‐critical applications. For exam‐
ple, rapid information spreading may signal rumors, abnormal transaction activities may reveal
fraud, and irregular patient health records may suggest rare medical conditions.

This task can be formulated as a hypothesis testing for temporal point processes (TPPs):
𝐻0 ∶ 𝑋test ∼ 𝑃𝑋 vs. 𝐻1 ∶ 𝑋test ≁ 𝑃𝑋,

where 𝑃𝑋 denotes some unknown data‐generating TPP.

Preliminary

Theorem 1 (Time‐rescaling theorem [2]). Let 𝑋 = {(𝑡𝑖, 𝑚𝑖)}
𝑁
𝑖=1 be a sequence of random event

points on the interval [0, 𝑇 ] corresponding to a TPP {𝑁𝑚(𝑡)}𝑀
𝑚=1 with conditional intensity func‐

tions (CIFs) {𝜆∗
𝑚(𝑡)}𝑀

𝑚=1. For each 𝑚 ∈ ℳ = {1, … , 𝑀}, denote the events of type‐𝑚 from
𝑁𝑚(𝑡) as 𝑋(𝑚) = (𝑡(𝑚)

1 , … , 𝑡(𝑚)
𝑁𝑚(𝑇 )), where the number of events satisfies ∑𝑀

𝑚=1 𝑁𝑚(𝑇 ) = 𝑁 .
If each 𝜆∗

𝑚(𝑡) is positive on [0, 𝑇 ] and Λ∗
𝑚(𝑇 ) = ∫𝑇

0 𝜆∗
𝑚(𝑠)d𝑠 < ∞ almost surely, then for each

𝑚 ∈ ℳ, the transformed sequence

𝑍(𝑚) = (Λ∗
𝑚(𝑡(𝑚)

1 ), … , Λ∗
𝑚(𝑡(𝑚)

𝑁𝑚(𝑇 )))
forms a standard Poisson process (SPP, i.e., the Poisson process with unit rate) on [0, Λ∗

𝑚(𝑇 )].
Moreover, the sequences {𝑍(𝑚)}𝑀

𝑚=1 are independent.

Proposition 1 [3]. For the SPP, conditionally on the event count in [0, 𝑉 ] being equal to 𝑁 , the
normalized arrival times 𝜏1/𝑉 , … , 𝜏𝑁/𝑉 are independently and uniformly distributed on [0, 1].

Proposition 2 [3]. The inter‐event times 𝑤𝑖 = 𝜏𝑖 − 𝜏𝑖−1 in the SPP are independent and follow
an Exponential(1) distribution.
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Proposed Method: CADES

Non‐Conformity Scores for Event Sequences
Based on the above time‐rescaling theorem and two properties of the SPP, we propose two
non‐conformity scores for event sequences:

𝑠arr(𝑋)∶= 𝐷KL(𝑓arr‖ ̂𝑓arr) =∫
∞

−∞
𝑓arr(𝑥) log(𝑓arr(𝑥)

̂𝑓arr(𝑥)
)d𝑥,

where 𝑓arr(𝑥) = 1[0,1](𝑥) is the uniform PDF, and ̂𝑓arr(𝑥) = 1
ℎ1𝑁 ∑𝑁

𝑖=1 𝜙(𝑥−𝜏𝑖/𝑉
ℎ1

) is the kernel
density estimation (KDE) of the normalized arrival times 𝜏𝑖/𝑉 of 𝑍, obtained by applying time‐
rescaling and concatenation to 𝑋.

𝑠int(𝑋)∶= 𝐷KL(𝑓int‖ ̂𝑓int) =∫
∞

−∞
𝑓int(𝑥) log(𝑓int(𝑥)

̂𝑓int(𝑥)
)d𝑥,

where 𝑓int(𝑥) = e−𝑥
1[0,∞)(𝑥) is the exponential PDF, and ̂𝑓int(𝑥) = 1

ℎ2(𝑁+1) ∑𝑁+1
𝑖=1 𝜙(𝑥−𝑤𝑖

ℎ2
) is the

KDE of the inter‐event times 𝑤𝑖 = 𝜏𝑖 − 𝜏𝑖−1 of 𝑍.

Test Procedure with Bonferroni Correction

For the proposed score 𝑠arr, the classical conformal p‐value [4] of 𝑋test is computed as:

𝑝𝑟
arr(𝑋test) = |{𝑋cal ∈ 𝒟cal ∶ 𝑠arr(𝑋test) ≤ 𝑠arr(𝑋cal)}| + 1

𝑛cal + 1 .

Aswe show that both small and large values of the proposed score can indicateOOD sequences,
we utilize the two‐sided p‐value:

𝑝arr(𝑋test) = 2min{𝑝𝑙
arr(𝑋test), 𝑝𝑟

arr(𝑋test)}.
To leverage the complementary sensitivities of 𝑠arr and 𝑠int to different abnormal patterns, we
combine them for OOD detection using the Bonferroni corrected p‐value:

𝑝cor(𝑋test) = min{2(1 + 𝜀)𝑝arr(𝑋test), 2(1 + 𝜀)𝑝int(𝑋test)}.

Algorithm 1: CADES: Conformal Anomaly Detection in Event Sequences

Input: Clean dataset 𝒟 = 𝒟train ∪ 𝒟cal, test sequence 𝑋test, target level 𝛼 ∈ (0, 1).
1: Train a neural TPP with CIFs {𝜆∗

𝑚(𝑡)}𝑀
𝑚=1 on 𝒟train;

2: Apply time‐rescaling and concatenation for 𝒟cal and 𝑋test;
3: Calculate the scores 𝑠arr and 𝑠int for 𝒟cal and 𝑋test;
4: Compute the Bonferroni corrected p‐value 𝑝cor(𝑋test).
Output: Declare 𝑋test as OOD or abnormal if 𝑝cor(𝑋test) ≤ 𝛼, otherwise as ID or normal.

Theoretical Guarantees

Proposition 3 (Marginal false positive rate (FPR) control). Suppose the test sequence 𝑋test and
the dataset 𝒟 are i.i.d. (or, more generally, exchangeable), then the p‐value 𝑝cor(𝑋test) is valid,
i.e., for every 𝛼 ∈ (0, 1), ℙ𝐻0

(𝑝cor(𝑋test) ≤ 𝛼) ≤ 𝛼.
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Figure 2. Calibration set size 𝑛cal that
guarantees the calibration‐conditional FPR is
bounded by 𝛼 with probability 1 − 𝛿.

Theorem2 (Calibration‐conditional FPR control). Let
𝛼, 𝛿 ∈ (0, 1) and 𝜀 ≥ 0. Let 𝒟cal be a calibration set
of size 𝑛cal, 𝑎 = ⌊(𝑛cal + 1) 𝛼

4(1+𝜀)⌋, 𝑏 = 𝑛cal + 1 − 𝑎,
and 𝜇 = 𝑎

𝑎+𝑏. For a given 𝛿 > 0, let 𝑛cal be such that

𝐼(1+𝜀)𝜇(𝑎, 𝑏) ≥ 1 − 𝛿
4,

where 𝐼𝑥(𝑎, 𝑏) denotes the CDF of the Beta(𝑎, 𝑏) dis‐
tribution. If 𝑠arr(𝑋) and 𝑠int(𝑋) are continuously dis‐
tributed, then for a new sequence 𝑋test, the probability of incorrectly identifying 𝑋test as OOD
conditioned on 𝒟cal while using Algorithm 1 is bounded by 𝛼 with probability 1 − 𝛿, i.e.,

ℙ[ℙ𝐻0
(declare OOD | 𝒟cal) ≤ 𝛼] ≥ 1 − 𝛿.

Experimental Results

Goodness‐of‐Fit (GOF) Test for SPP
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Figure 3. Performance of GOF test for the SPP measured by AUROC (higher is better).

Detecting Anomalies in Synthetic Data
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Figure 4. Performance of OOD detection on synthetic datasets measured by AUROC.

Detecting Anomalies in Real‐World Data

Table 1. AUROC (%) for OOD detection on real‐world datasets. Best results are in bold and
second best are underlined.

Dataset KS arrival KS inter‐event Chi‐squared Log‐likelihood 3S statistic MultiAD‐𝑄+ MultiAD‐𝑄− CADES (ours)
LOGS ‐ Packet corruption (1%) 47.24 71.80 67.27 90.92 95.03 92.44 96.61 96.48
LOGS ‐ Packet corruption (10%) 64.96 98.72 49.35 98.98 99.30 99.31 99.53 99.48
LOGS ‐ Packet duplication (1%) 61.88 79.59 21.26 81.97 91.46 91.24 78.15 92.88
LOGS ‐ Packet delay (frontend) 90.31 47.46 95.70 99.55 96.10 97.97 95.27 98.15
LOGS ‐ Packet delay (all services) 95.13 96.60 94.35 96.30 99.16 99.59 99.31 99.33
STEAD ‐ Anchorage, AK 62.31 78.44 70.75 88.16 91.73 84.00 99.16 99.31
STEAD ‐ Aleutian Islands, AK 53.37 86.48 64.17 97.08 99.80 99.86 99.84 99.95
STEAD ‐ Helmet, CA 61.94 98.83 73.62 96.96 93.82 70.71 99.13 99.30
Average Rank 7.50 5.63 7.00 4.25 3.63 3.50 3.00 1.50
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Figure 5. Boxplots of FPR for OOD detection on two real‐world datasets under different
target levels 𝛼.

Table 2. TPR (%) for OOD detection on the STEAD dataset under the target level 𝛼 = 0.05.

Dataset 3S statistic MultiAD‐𝑄+ CADES

STEAD ‐ Anchorage, AK 74.30 67.14 95.46
STEAD ‐ Aleutian Islands, AK 100 100 100
STEAD ‐ Helmet, CA 69.20 6.50 98.38
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