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Combinatorial Optimization

min  f(z)
st. g(x) >0,

e non-differentiable

* non-ecnumerable

xr € 2. » often NP-hard

It 1s a subfield of mathematical optimization;

* The variables are discrete, and the decision space is finite;

* The number of feasible solutions increases exponentially;

* The optimal solution always exists but is hard to obtain in polynomial running time;

* It has important applications in many practical scenarios, such as logistics, supply chain
management, production planning, facility location and layout, portfolio optimization, drug
discovery telecommunications network design, and chip design.

[1] Korte, Bernhard H., et al. Combinatorial optimization. Vol. 1. Heidelberg: Springer, 2011.

[2] Bengio, Yoshua, Andrea Lodi, and Antoine Prouvost. "Machine learning for combinatorial optimization: a methodological tour d’horizon." European Journal of Operational

Research 290.2 (2021): 405-421.
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Combinatorial Optimization

Travelling Salesman Problem (TSP):

It aims to find the shortest route that visits all the

given n nodes exactly once and returns to the origin
node. (NP-hard)

Capacitated Vehicle Routing Problem (CVRP):

Vehicles have a limited carrying capacity for the
goods that must be delivered. It aims to find the
optimal set of routes for a fleet of vehicles in order
to deliver to a given set of customers with the
lowest cost (e.g., length). (NP-hard)

()
/ I = YA
=, 0N
LT e
=)' Depot
Q 4___m / Q m Customer
\éﬁl‘ / CE\ Vehicle

A TSP example (also called
instance) with the optimal solution
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A CVRP example (also called instance)
with the optimal solution

[1] Korte, Bernhard H., et al. Combinatorial optimization. Vol. 1. Heidelberg: Springer, 2011.

[2] Travelling salesman problem - Wikipedia, https://en.wikipedia.org/wiki/Travelling_salesman_problem
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Solving Combinatorial Optimization

Exact Algorithms:

* Brute-force search: ( !) but
 Dynamic programming: ( 22 )

« Branch and Bound: (2 ) Super time-sonsuming

Approximation Algorithms (Heuristics):

e Christofides Algorithm: but
* Greedy Algorithm:

* Evolutionary Algorithm:
* Ant Colony Optimization (ACO): parameters and workflows A TSP example (also called

instance) with the optimal solution

Need manpower to design

Neural Combinatorial Optimization (NCO):

e Learning to Construct (L2C): but
Using NN to construct solutions from scratch

* Learning to Improve (L2I):
Using NNss to iteratively improve feasible solutions

Performs bad especially on Out-
of-domain problems and instances

[1] Bengio, Yoshua, Andrea Lodi, and Antoine Prouvost. "Machine learning for combinatorial optimization: a methodological tour d’horizon." European Journal of Operational
Research 290.2 (2021): 405-421.
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LLM for Combinatorial Optimization
Directly using LLLM to plan [1]:

* Input node coordinates to LLMs

* Let the LLM to plan solutions and gradually

update the solutions.

LLM-based Automatic Heuristic Design [2]:

Approximation Algorithms (Heuristics):

* Christofides Algorithm:

* Greedy Algorithm:

* Evolutionary Algorithm:
* Ant Colony Optimization (ACO):

but

Need manpower to design
parameters and workflows

A TSP example (also called
instance) with the optimal solution

* Select a heuristic shown in the page before and using LLMs to initallize
gradually update the heuristics, taking the original ones as the starting nodes.

Methods | LEMA*  OPRO* | MCTS-AHD(step-by-step construction)
TSP20 3.94% 4.40% 1.71%
TSP50 - 133.00% 11.82%

[1] Yang, C., Wang, X., Lu, Y., Liu, H., Le, Q. V., Zhou, D., and Chen, X. Large language models as optimizers, 2024. URL https://arxiv.org/abs/2309.03409.
[2] Liu, F., Tong, X., Yuan, M., and Zhang, Q. Algorithm evolution using large language model. arXiv preprint arXiv:2311.15249, 2023, ICML2024.
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LLM for Combinatorial Optimization

LLM-based Automatic Heuristic Design [2]:

* Select a heuristic shown in the page before and using LLMs to initallize
greadually update the heuristics, taking the original ones as the starting nodes.

Design greedy heuristics for solving a TSP instance

| o
O—o
- p °
o heuristic o o |\
Descriptions @ details g O [ \
for task O i? ot }
. </> o = | -
?nd heurlsl;tlc _Code o 1%\ 0 o o Aj Solution and
ramewor Code implementation A\ Feedback
of the key function vy

LLM-based AHD can be applied to any problem and heursitic.
[t can also generate powerful heuristics using the pre-trained knolwedge in LLMs.

[1] Yang, C., Wang, X., Lu, Y., Liu, H., Le, Q. V., Zhou, D., and Chen, X. Large language models as optimizers, 2024. URL https://arxiv.org/abs/2309.03409.
[2] Liu, F., Tong, X., Yuan, M., and Zhang, Q. Algorithm evolution using large language model. arXiv preprint arXiv:2311.15249, 2023, ICML2024.
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Performance

A Heuristic functions in the original

LLM-based Automatic Heuristic Design [2]:

LLM for Combinatorial Optimization

* Select a heuristic shown in the page before and using LLMs to initallize

greadually update the heuristics, taking the original ones as the starting nodes.

EoH [1] Designs to maintain a population of code and its correspoing designing
idea for heurisitc evolution.

@ elite population
—»LLM({{5))-based heuristic evolution

. o O Newly generated heuristic functions
)
-
O O Population
)
D Update

Feature of heuristic functiong

[1] Liu, F., Tong, X., Yuan, M., and Zhang, Q. Algorithm evolution using large language model. arXiv preprint arXiv:2311.15249, 2023, ICML2024.

© Copyright National University of Singapore. All Rights Reserved.
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A ‘/d Heuristic functions preserved
in the updated elite population

O Discarded heuristic functions
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Prompt Strategies:
1) Exploration:
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2) Modification:
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/

Feature of heuristic functions

(c) Evolution of both thoughts and codes (EoH, ours)
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Our Method: MCTS-AHD

Motivation

All the existing methods like EoH [1], Funsearch [2] and ReEvo [3] adopt a
population-based method.

Population-based methods will make fast convergence but these methods are
difficult in comprehensive exploration in the space of all possible heuristics.

Heuristic functions in the original
@ elite population
“SLLM({5))-based heuristic evolution

QO Newly generated heuristic functions

O \JC) Popull:?;ion
(‘i . . Q‘ Update
O

F,

»

Feature of heuristic functiong
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Performance

A ‘/ d Heuristic functions preserved
in the updated elite population

OO Discarded heuristic functions

Feature of heuristic functions

Performance
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Feature of heuristic functions

—»

Al ¥ Better-performing tree nodes of
@ heuristics outside local optima

S New MCTS expansions

Feature of heuristic functions

This paper propose to use MCTS as a better structure for heuristic evolution.
MCTS enable multi-step heuristic evolution for comprehensive exploration.

[1] Liu, F., Tong, X., Yuan, M., and Zhang, Q. Algorithm evolution using large language model. arXiv preprint arXiv:2311.15249, 2023, ICML2024.
[2] Romera-Paredes, B., Barekatain, M., Novikov, A., Balog, M., Kumar, M. P., Dupont, E., Ruiz, F. J., Ellenberg, J. S., Wang, P., Fawzi, O., et al. Mathematical discoveries from program search with large
language models. Nature, 625 (7995):468—475, 2024.

[3] Ye, H., Wang, J., Cao, Z., Berto, F., Hua, C., Kim, H., Park, J., and Song, G. Reevo: Large language models as hyper-heuristics with reflective evolution. arXiv preprint arXiv:2402.01145, 2024a.
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Our Method: MCTS-AHD

How is the MCTS process of MCTS-AHD?

A

Repeated until evaluating g( ) for T times

> Selection > Expansion > Simulation — Backpropagation

Potential
i & Progressive}
"""" Widening

To a child node with the largest UCT(-)

NG =1
0 =@ =8

Selection, Expanion, Simulation, and Backpropagation are general steps for MCTS.

Selection 1s based on the UCT function. Expansion in MCTS-AHD is done by
LLMs. It involves several prompt strategies:
UCT(c) = (Q(C) =Gl 3 g \/ Bl + ”) ,

Qmazr — 4min N(C) il, el, 62, ml, m2, Sl.

© Copyright National University of Singapore. All Rights Reserved. 12



Our Method: MCTS-AHD

How is the MCTS process of MCTS-AHD?

Repeated until evaluating g( ) for T times <
> Selection > Expansion > Simulation — Backpropagation

e NN Potential
it Progressive:
"~ Widening

To a child node with the largest UCT(-)

NG =1
0 =@ =8

Simulation assess the performance of Backpropagation updates the Q and N value
leaves. of nodes by:

e2

- A € §
Q(ne) et & Q(c),

00) = e Nipje 3, Hid

c€Children(n,)

© Copyright National University of Singapore. All Rights Reserved. 13



Our Method: MCTS-AHD

How is the MCTS process of MCTS-AHD?

Repeated until evaluating g( ) for T times <
> Selection > Expansion > Simulation — Backpropagation

20 W §nodes Lo e ema i nodes PN M\
~ua, .. Potential i

i & Progressive}
"~ Widening

To a child node with the largest UCT(-)

100 =«BD NE)=1
: 0 =@ =8

We also involve Progressive Widening, to We design Exploration-Decay to improve the
cope with the dynamic development of the convergence of heuristic evaluation in the final
heuristic space. steps.
UCT(C) _ (Q(C) — Qmin T B \/ln(N(nc) + 1))

o, . . Gmazx — 9min N(C) ’

Codition: )
T—t
|N(n)*| > |children(n.)], A= ox ———.

© Copyright National University of Singapore. All Rights Reserved. 14



Our Method: MCTS-AHD

AINUS
How does MCTS-AHD make node expansion?

»/ MNational University
of Singapore

Adopted from [1] where LLM are used to simulate crossover and mutation with several
prompt strategies.

We design six prompt strategies for LLM-based heuristic modification

Action: il Action: m1 Action: m2
Initialization: Generate a heuristic function for uintion. Modity e aryen b md fimction S eIMEOR Blucty iho v Rekinio 1 eton
t with its description (Q), e.g., add new with its description (), e.g., change parameter
Task P & general framework ; .
mechanisms or code segments. settings.
Prompt Prom t
v @ Functlon DESLrlptIOI‘l p
E:> <[> f
@ =24

L"ll

L"ll

Prompt @
Functlon Descrlptlon Fumtlon Descrlpllon
®
<[ > / < / > /
New MCTS node i ; New MCTS node ( )
Action: el

New MCTS node ( ;
Action: e2
Crossover: Given several functions with their

Action: sl
descriptions and performances(@), generate a

Reasoning: Given several related functions with
description and performance (O), learn from their descriptions and performances, reason and
totally different one. another one (@) and generate a new function
@ Prompt@ Func,tlon Description

generate a new function with better performance.
’>1 =1 |5 Promm{} Function - Description Prompt {} Functlon g Description
;‘ B/ . =) () — = E:> ‘\‘J'lb
<I> IIM‘::> Ef>_ n <I>
New MCTS node ;

New MCTS node

Crossover: Based on a function with its

L

L

H_J
New MCTS node O

s
L"II

[1] Liu, F., Tong, X., Yuan, M., and Zhang, Q. Algorithm evolution using large language model. arXiv preprint arXiv:2311.15249, 2023, ICML2024
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Experiment & Discussion
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Experiment

To show the effectiveness and the wide application of MCTS-AHD, we condsider 16
heuristic evolution senarios.

NP-hard CO Problems as Tasks

e Step-by-step construction framework:
o Travelling Salesman Problem (TSP)

o TSP-copy for a reference on simultaneous heuristic function evaluations
o 0-1 Knapsack (KP)

o Online Bin Packing Problem (Online BPP) (Please set max_fe = 2000 for re-implementing the report results
for Online BPP)

o Admissible Set Problem (ASP)

¢ Ant Colony Optimization (ACO) (Please set init_pop_size = 10 in re-implementing the report results for Black-
box settings):
o TSP and Black-box settings
o Capacitated Vehicle Routing Problem (CVRP) and Black-box settings
o Multiple Knapsack Problem (MKP) and Black-box settings
o Offline Bin Packing Problem (Offline BPP) and Black-box settings

¢ Guided Local Search:
o (Large-scale) TSP

© Copyright National University of Singapore. All Rights Reserved. 17



Experiment & Discussion

Experiment

To show the effectiveness and the wide application of MCTS-AHD, we condsider 16
heuristic evolution senarios.

Other Complex Tasks

e Bayesian Optimization (BO):
o Cost-aware Function Design in Active Learning (Please set botorch according to the requirements.txt for
the report results)

And a mountain_car optimization problem.

© Copyright National University of Singapore. All Rights Reserved.




Experiment & Discussion

Experiment Results

MCTS-AHD can get significantly better results on nearly all of these senarios.

National University
of Singapore

ANUS

Table 1. Designing heuristics with the step-by-step construction framework for TSP and KP. We evaluate methods on 6 test sets with
1,000 instances each. Test sets with in-domain scales (i.i.d. to the evaluation dataset D) are underlined. Since AHD methods have no
guarantees for generalization ability, the effect on in-domain datasets is more important. Optimal for TSP is obtained by LKH (Lin &
Kernighan, 1973), and Optimal for KP is the result of OR-Tools. Each LLM-based AHD method is run three times and we report the
average performances. The best-performing method with each LLM is shaded, and each test set’s overall best result is in bold.

Task TSP KP
N= N=50 N=100 N=200 N=50, W=12.5 N=100, W=25 N=200, W=25
Methods Obj.) Gap Obj.l Gap Obj.| Gap Obj.T Gap Obj.T Gap Obj.T Gap
Optimal 5.675 - 7.768 - 10.659 - 20.037 - 40.271 - 57.448 -
Greedy Construct 6.959 22.62% 9.706 24.94% 13.461 26.29% 19.985 0.26% 40.225 0.12% 57.395 0.09%
POMO 5.697 0.39% 8.001 3.01% 12.897 20.45% 19.612 2.12% 39.676 1.48% 57271 0.09%
LLM-based AHD: GPT-3.5-turbo
Funsearch 6.683 17.75% 9.240 18.95% 12.808 19.61% 19.985 0.26% 40.225 0.12% 57.395 0.09%
EoH 6.390 12.59% 8.930 14.96% 12.538 17.63% 19.994 0.21% 40.231 0.10% 57.400 0.08%
MCTS-AHD(Ours) 6.346 11.82% 8.861 14.08% 12.418 16.51% 19.997 0.20% 40.233 0.09% 57.393 0.10%
LLM-based AHD: GPT-40-mini
Funsearch 6.357 12.00% 8.850 13.93% 12.372 15.54% 19.988 0.24% 40.227 0.11% 57.398 0.09%
EoH 6.394 12.67% 8.894 14.49% 12.437 16.68% 19.993 0.22% 40.231 0.10% 57.399 0.09%
MCTS-AHD(Ours) 6.225 9.69% 8.684 11.79% 12.120 13.71% 20.015 011% 40.252 0.05% 57.423 0.04 %

© Copyright National University of Singapore. All Rights Reserved.
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Experiment & Discussion

Experiment Results

MCTS-AHD can get significantly better results on nearly all of these senarios.

National University
of Singapore

Table 4. Designing CAFs for BO. The table shows the gaps to optimal when running BO on instances with manually designed CAFs
and CAFs designed by LIL.M-based AHD methods. LLM-based AHD methods are run three times for the average gaps. In testing, the
evaluation budgets for BO are 30 and we run 10 trials for average gaps. The results of EI, Elpu, and El-cool are from Yao et al. (2024c).

Instances | Ackley Rastrigin | Griewank Rosenbrock Levy ThreeHumpCamel StyblinskiTang Hartmann Powell Shekel Hartmann Cosine8
EI 2.66% 4.74% 0.49% 1.26% 0.01% 0.05% 0.03% 0.00% 18.89% 791% 0.03%  0.47%
Elpu 233% 5.62% 0.34% 2.36% 0.01% 0.12% 0.02% 0.00% 19.83% 7.92%  0.03% 0.47%
El-cool 274% 5.78% 0.34% 2.29% 0.01% 0.07% 0.03% 0.00% 1495% 821% 0.03%  0.54%

LLM-based AHD: GPT-4o-mini
EoH 245%  0.90% 0.54% 56.78%  0.20% 0.26% 0.79% 0.04% 70.89% 4.56% 033%  036%
MCTS-AHD | 2.40% 0.77% 0.36% 1.68% 0.01% 0.02% 0.20% 001% 1.27% 394% 038%  0.34%

© Copyright National University of Singapore. All Rights Reserved.

CAF: Cost-Aware Acquisition Function



Experiment & Discussion

Experiment Results

Evaluation curves show that MCTS-AHD can promote comprehensive exploration without
losing convergence speed.

Evolution Curves of LLM-based AHD Methods Evolution Curves of LLM-based AHD Methods
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Experiment & Discussion

What is the advantage scope of MCTS-AHD, compared to existing
population-based methods

* The relation between performance and the complexity of heuristic space.

Any heuristic function can be expressed in the weighted-sum form of sub-functions as follows:

a1 f1(z) + as fa(x) + azfa(x) + ... + anfn(x)

Relationship of Space Size and Gap Ratio

35% r

TSP-SC-3.5
TSP-SC-40
KP-SC-3.5
KP-SC-40
ASP-SC-3.5
ASP-SC-40 L
TSP-GLS-40 ol
CAF-BO-4o ,
10% 1 TSP-ACO-4o /’V
CVRP-ACO-40 . i
-=-= Trend line

30%

25%

20%

YAdornme

15%

Optimality Gap Ratio

5% 1
0%

5% >

-10%

75 10.0 12.5 15.0 17.5 20.0 25 25.0
Approximate Size of Heuristic Space H

MCTS-AHD performs better in application scenarios with more complex heuristic spaces.

N8
[\
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Experiment & Discussion
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What is the advantage scope of MCTS-AHD, compared to existing

population-based methods

* The relation between performance and the amount of descriptions.

ReEvo propose to consider black-box optimization problems in LLM-based AHD.

Table 16. Implementing MCTS-AHD on Black-box CO tasks with ACO general frameworks. We follow the settings of Ye et al. (2024a) in
heuristic evolution and run each LLM-based method three times for average performance. The white-box results are the same as Table 2.

TSP CVRP MKP Offline BPP
N= N=50 N=50, C=50 N=100,m=5 N=500,C=150
Methods Obj.l Obj.| Obj.7T Obj.|

ACO 5.992 11.355 22.738 208.828

DeepACO 5.842 8.888 23.093 203.125
White-box Setting: GPT-4o0-mini

EoH 5.828 9.359 23.139 204.646

ReEvo 5.856 9.327 23.245 206.693

MCTS-AHD(Ours) 5.801 9.286 23.269 204.094
Black-box Setting: GPT-4o-mini

EoH 5.831 9.401 23.240 204.615

ReEvo 5.860 9.404 23.196 206.021

MCTS-AHD(Ours) 5.830 9.444 23.191 205.375

MCTS-AHD performs better in application scenarios with more descriptions.

© Copyright National University of Singapore. All Rights Reserved.
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