# **Generative Social Choice: The Next Generation**

ICML 2025

Niclas Boehmer, Sara Fish, Ariel Procaccia July 17, 2025



Link to paper

#### **Problem Statement**

Given a large dataset of diverse opinions, how can we **proportionally su** 

proportionally summarize them?

x% of users "control"  $\simeq x\%$  of words,  $\forall x$ 



#### Motivation

Proportional summarization has a diverse array of potential applications.

Motivating application: Al and democracy; specifically, collective response systems like Polis.



Figure source: Daniel Halpern

LLM-based methods allow for greater flexibility in such processes (for both inputs and outputs).

However: ad hoc LLM-based methods lack reliability, robustness, and interpretability.

 $\hookrightarrow$  E.g., how to ensure the LLM does not suppress or overweight fringe opinions?

# **Approach: Generative Social Choice**

Our goal: **proportionally summarize** user opinions using a **trustworthy, LLM-based** process.

How to unite these conflicting objectives?

Our approach (initiated by [FGPPRSW'23]): generative social choice query framework.

Related to broader literature on Al alignment with guarantees, see e.g. Wu and Hartline (2024).

Theory: Specify process using (black-box) queries

**Process**  $P := \text{algorithm that uses queries } \square$ . O.

**Thm.** Under assumptions about  $\square$ , O, process *P* satisfies proportionality/runtime/... guarantees.

Our work: social choice  $\rightarrow$  proportionality guarantees.

Instantiation: Implement and empirically test queries

**Implement**  $\square$ , O, typically leveraging LLMs

**Evaluate** □, O using relevant data (e.g. Polis)

Our work: PROSE, a general-purpose implementation.

**Key observation**: establishing trust in the queries is sufficient for trust in the whole process.

#### Generative Social Choice... The Next Generation

# Generative Social Choice [FGPPRSW'23]



- 1. User sets number of statements k
- 2. Each statement represents 1/k of users
- 3. Guarantees only for perfect query results
- 4. Implementation for structured user data

# The Next Generation



- 1. Algorithm adaptively chooses k
- 2. Variable statement lengths (support  $\propto$  length)
- 3. Process and guarantees for noisy query results
- 4. Flexible implementation compatible with unstructured user data

### Input



# Social Choice: Theory of Collective Decision Making



# Social Choice: Theory of Collective Decision Making



#### **Proportional summarization**

- Voters: participating users.
- Candidates: all possible statements.

**Task:** Select statements with total length  $\leq B$ .

→ Participatory budgeting

(theoretically very well understood)

**Novelty** Virtually infinite candidate space.

#### Slate Generation via Social Choice

#### **Generative Query**



Data of users, approval level r, length c



Most-liked statement of at most c words at level r

#### **Discriminative Query**



User data + statement



How much user agrees with statement

# Slate Generation Algorithm

Initialize user set , slate .





For  $\bigcirc \in \{ \bigcirc, \dots, \bigcirc \}$  and  $c \in \{B, B-1, \dots, 1\}$ 

- Generate statements  $\square$  (  $, \cdots, c$ ) for  $\cdots \ge \cdots$
- Using discriminative query (), compute:



- Pick = with most  $\bigcirc$
- If  $(\# \bullet \text{ with } \bigcirc \ge \bigcirc) \cdot \frac{B}{n} \ge \text{wordcount}(==)$ :



Delete covered users + add statement to slate



## **PROSE and Experimental Setup**

#### **PROSE Query Implementations** (GPT-40-2024-11-20):

- user, statement Disc approval score computed based on two (fast) LLM calls
- $\bullet$  users  $\rightarrow$  Gen  $\rightarrow$  statement identify cohesive group (clustering) + generate consensus statement (LLM)

Datasets BIRTHCONTROL, BIRTHCONTROLSKEW, OBESITY, BOWLING GREEN

#### **Baselines**

- Contextless Zero-Shot: given topic and budget, generate slate in single response
- Zero-Shot: given topic, budget, and user data, generate slate in single response
- ullet Clustering: clustering of embedded user data + LLM-generated cluster summaries
- PROSE-UnitCost: PROSE with unit-length statements (resembling [FGPPRSW'23]'s approach)

## **Experiments: Results on Bowling Green**



## **Experiments: Results on Bowling Green**



(Utilities computed using "independent", expensive CoT-based  $\longrightarrow$  Disc $\longrightarrow$ 

# **High-Level Takeaways**

(1) Increased trustworthiness of LLM-based algorithms via query framework

(2) LLMs can enable new forms of civic participation