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Adversarial Attacks and Training

Adversarial Attacks: Finding Vulnerabilities Adversarial Training (AT): Building Robustness
Small imperceptible perturbations can fool models into Training with adversarial examples improves model
incorrect predictions (sentiment) robustness against attacks
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From Theory to Practice: Why Adversarial Training
Falls Short in Real Applications

> Unclear Trade-Off Between Generalization and Robustness

o In vision models: & ® "
* Significant improvements in robustness = = ®

- Notable drop | lizati f G AT z
otable drop in generalization performance S AT/

O O

o In encoder-based LLMs: [ e

 Robustness improvements Generalization Generalization

* Generalization may also improve VISION Encoder LLMs

» Scalability Challenges

o Significant increase in training time due to cost of adversarial examples (AEs) generation

* 10-step PGD adversarial training increases training time by 10x MK
Xbs
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Why Does AT Affect Generalization and Robustness
Differently?

» Manifold Hypothesis AEs

. HighID
l.“FF  On manifold AEs
- BN Better generalization
: ~ Lower robustness

o On manifold AEs - improve generalization
o Off manifold AEs - improve robustness

» Intrinsic Dimensionality (ID) & On/Off-

Manifold Behavior Low ID

Off manifold AEs
Better robustness

o Lower ID - more off manifold AEs " Lower generalization

* |mproves robustness, reduces generalization
o Higher ID - more on manifold AEs
* |mproves generalization, reduces robustness
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Layer-wise Analysis: How Adversarial Training
Affects Model Performance

Layer-wise adversarial training analysis reveals:
o Higher ID -> lower off manifold ratio -> better generalization

o Lower ID -> higher off manifold ratio -> better robustness
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SMAAT: Scalable Manifold Aware Adversarial

Tralning

o ldentify the layer with minimum intrinsic dimensionality (ID)

o Apply AT specifically to that layer for optimal robustness and scalability.

Find I* (Eq. 6)

AT at I* (Eq. 5)

Standard AT AE: x + §,
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SMAAT Evaluation: Generalization and Robustness

at No Extra Cost

o SMAAT evaluation across three domains: Text classification, retrieval model in RAG,
and LLM safety filtering

o Achieves superior robustness with preserved generalization and no training overhead
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THANK YOU

We'd love to talk! Find us at Poster
Session 5 on Tuesday.




