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Preliminary
Generative Modeling:

• Sampling from data density p(x)
• Directly constructing p(x) is hard!
• Diffusion models construct log gradients, ∇x log p(x)

Denoising Diffusion (DDPM):
• Denoising Process:

◦ Gradually correct p(xt) from Gaussian noise using ∇xt log p(xt)

0Ho et al, “Denoising diffusion probabilistic models.”, NeurIPS, 2020.
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What is Memorization in Diffusion Models?
Definition: A phenomenon in which a model nearly replicates training data.
Risks:

• Copyright & Privacy issues
• Degradation in utility

Memorization Categories:
• Training data in Red outline

Exact

Mem 

Identical Duplicate 
of training data

Partial

Mem 

Part, Style, 
Background Mimic
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Memorization in Probability Density Perspective
Geometric view of Memorization

• Local Intrinsic Dimensionality (LID): Exact Memorization −→ 0 dimensionality1

• Probability Density (Ours): Sharp peaks in distribution
*Enable analyzing entire denosing timesteps

Smooth Sharp peaks

memorized

1Ross et al. “A geometric framework for understanding memorization in generative models.” ICLR. 2025.
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Sharpness interpreted via Hessian Eigenvalues
Score Function: sθ(xt) ≈ ∇xt log pt(xt)

Jacobian of Score Function (Hessian): Hθ(xt) ≈ ∇2
xt

log pt(xt)

Conditional case: sθ(xt , c),Hθ(xt , c)

Hessian Eigenvalues tell Curvature:

• λ ≥ 0: Concave downward or Flat
• λ < 0: Concave upward (Key for finding peaks)
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Eigenvalue Analysis in Toy Data
2D Gaussian:

• Duplicated single data point for a sharp peak
• Sharp peak shows large negative λ over timesteps

(a) Learned Scores (b) Eigenvalues over Timestep
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Eigenvalue Analysis in Toy Data (Cont’d)
MNIST:

• Digit 3 for Non-mem, digit 9 for Mem
• Memorized samples consistently show large negative λ even at the initial step

Mem

Non-mem

(c) Eigenvalues on initial (t=T-1) and last (t=1) sampling step.
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Eigenvalue Analysis in Stable Diffusion (SD)
Similar phenomenon in Stable Diffusion with 16,384 dimension
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Eigenvalue Statistics for Efficient Detection
Under Gaussian,

E [∥s(x)∥2] = − tr(H(x)) = Negative Sum of Eigenvalues

E [∥H(x)s(x)∥2] = − tr(H(x)3) = Negative Sum of Cubic Eigenvalues

• Memorized −→ large negative sum (magnitude ↑ )

Explain Wen’s SOTA Detection Metric2:

∥s∆
θ (xt)∥avg =

1
T

1∑
t=T

∥sθ(xt , c)− sθ(xt)∥

• Sharpness difference between log pt(xt , c) and log pt(xt)

Our enhanced metric:
∥H∆
θ (xt) s∆

θ (xt)∥
2Wen, Yuxin, et al. “Detecting, explaining, and mitigating memorization in diffusion models.”, ICLR. 2024.
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Our Mitigation Strategy: SAIL
Existing mitigation strategies modify prompts (or text embeddings)

• Degraded generation quality / user purpose

Our strategy SAIL (Sharpness-Aware Initialization for Latent diffusion)

• Idea: Optimize the initial noise xT to lie on smoother regions.
• Objective function:

LSAIL(xT ) = ∥H∆
θ (xT )s∆

θ (xT )∥2︸ ︷︷ ︸
Sharpness measure

+ α∥xT∥2︸ ︷︷ ︸
Gaussian regularization

• No extra modifications on model, only the initial noise xT changed.
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Quantitative Result of SAIL
SAIL achieves superior performance
Low similarity scores & High CLIP scores (better prompt-img alignmnet)

SD v1.4 SD v2.0
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Qualitative Result of SAIL
SAIL protects key details in prompts while others fail
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Original Ours Ren et al. Wen et al. RNA RTA
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