

Understanding Memorization in Generative Models via Sharpness in Probability Landscapes

Dongjae Jeon*, Dueun Kim*, Albert No

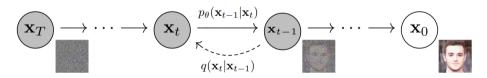
Preliminary

Generative Modeling:

- Sampling from data density $p(\mathbf{x})$
- Directly constructing p(x) is hard!
- Diffusion models construct log gradients, $\nabla_{\mathbf{x}} \log p(\mathbf{x})$

■ Denoising Diffusion (DDPM):

- Denoising Process:
 - Gradually correct $p(\mathbf{x}_t)$ from Gaussian noise using $\nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t)$



⁰Ho et al, "Denoising diffusion probabilistic models.", *NeurIPS*, 2020.

What is Memorization in Diffusion Models?

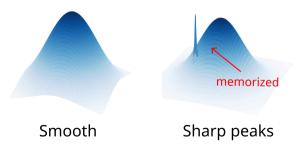
- **Definition:** A phenomenon in which a model nearly replicates training data.
- Risks:
 - Copyright & Privacy issues
 - Degradation in utility
- **■** Memorization Categories:
 - Training data in Red outline

Partial Mem

Part, Style,

Memorization in Probability Density Perspective

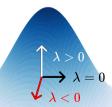
- Geometric view of Memorization
 - Local Intrinsic Dimensionality (LID): Exact Memorization → 0 dimensionality¹
 - Probability Density (Ours): Sharp peaks in distribution
 *Enable analyzing entire denosing timesteps



¹Ross et al. "A geometric framework for understanding memorization in generative models." *ICLR*. 2025.

Sharpness interpreted via Hessian Eigenvalues

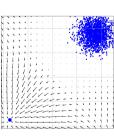
- Score Function: $s_{\theta}(\mathbf{x}_t) \approx \nabla_{\mathbf{x}_t} \log p_t(\mathbf{x}_t)$
- Jacobian of Score Function (Hessian): $H_{\theta}(\mathbf{x}_t) \approx \nabla_{\mathbf{x}_t}^2 \log p_t(\mathbf{x}_t)$
- Conditional case: $s_{\theta}(\mathbf{x}_t, c), H_{\theta}(\mathbf{x}_t, c)$
- Hessian Eigenvalues tell Curvature:
 - $\lambda > 0$: Concave downward or Flat
 - λ < 0: Concave upward (Key for finding peaks)



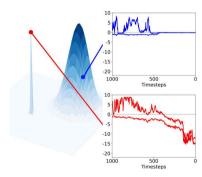
Eigenvalue Analysis in Toy Data

2D Gaussian:

- Duplicated single data point for a sharp peak
- Sharp peak shows large negative λ over timesteps



(a) Learned Scores

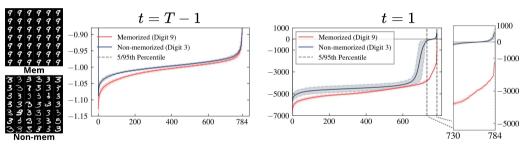


(b) Eigenvalues over Timestep

Eigenvalue Analysis in Toy Data (Cont'd)

MNIST:

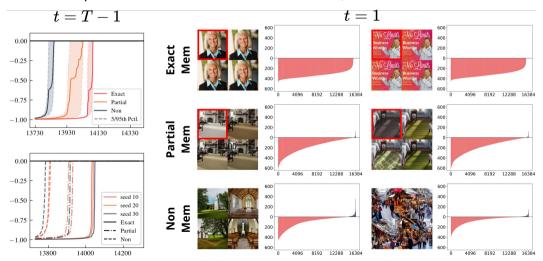
- Digit 3 for Non-mem, digit 9 for Mem
- Memorized samples consistently show large negative λ even at the initial step



(c) Eigenvalues on initial (t=T-1) and last (t=1) sampling step.

Eigenvalue Analysis in Stable Diffusion (SD)

■ Similar phenomenon in Stable Diffusion with 16,384 dimension



Eigenvalue Statistics for Efficient Detection

Under Gaussian,

$$E[\|s(\mathbf{x})\|^2] = -\operatorname{tr}(H(\mathbf{x})) = \text{Negative Sum of Eigenvalues}$$

 $E[\|H(\mathbf{x})s(\mathbf{x})\|^2] = -\operatorname{tr}(H(\mathbf{x})^3) = \text{Negative Sum of Cubic Eigenvalues}$

- Memorized → large negative sum (magnitude ↑)
- Explain Wen's SOTA Detection Metric²:

$$\|s^{\Delta}_{ heta}(\mathbf{x}_t)\|_{\mathsf{avg}} = rac{1}{T} \sum_{t=T}^1 \|s_{ heta}(\mathbf{x}_t, c) - s_{ heta}(\mathbf{x}_t)\|_{\mathsf{avg}}$$

- Sharpness difference between $\log p_t(\mathbf{x}_t, c)$ and $\log p_t(\mathbf{x}_t)$
- Our enhanced metric:

$$\|H_{\theta}^{\Delta}(\mathbf{x}_t) s_{\theta}^{\Delta}(\mathbf{x}_t)\|$$

²Wen, Yuxin, et al. "Detecting, explaining, and mitigating memorization in diffusion models.", ICLR. 2024.

Our Mitigation Strategy: SAIL

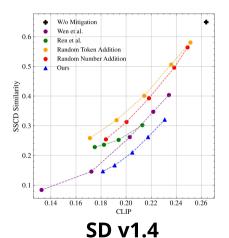
- Existing mitigation strategies modify prompts (or text embeddings)
 - Degraded generation quality / user purpose
- Our strategy SAIL (Sharpness-Aware Initialization for Latent diffusion)
 - Idea: Optimize the initial noise x_T to lie on smoother regions.
 - Objective function:

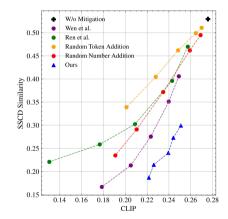
$$L_{\mathsf{SAIL}}(\mathbf{x}_{\mathcal{T}}) = \underbrace{\|H^{\Delta}_{\theta}(\mathbf{x}_{\mathcal{T}})s^{\Delta}_{\theta}(\mathbf{x}_{\mathcal{T}})\|^{2}}_{\mathsf{Sharpness\ measure}} + \underbrace{\alpha\|\mathbf{x}_{\mathcal{T}}\|^{2}}_{\mathsf{Gaussian\ regularization}}$$

• No extra modifications on model, only the initial noise \mathbf{x}_T changed.

Quantitative Result of SAIL

- SAIL achieves superior performance
- Low similarity scores & High CLIP scores (better prompt-img alignmnet)





SD v2.0

Qualitative Result of SAIL

■ SAIL protects key details in prompts while others fail

