# Whitened CLIP as a Likelihood Surrogate of Images and Captions

Roy Betser, Meir Yossef Levi, Prof. Guy Gilboa



#### Motivation

- CLIP[1] is multi-modal combining text and image.
- Likelihood scores are useful for numerus applications.
- Language models explicitly approximate negative log-likelihood.
- Classic Image analysis methods explicitly approximate P(x).
- DL models implicitly approximate P(x).
- We propose a direct, explicit, likelihood approximation, using CLIP.

#### Notations

- A set of N random vectors  $X = \{x_1, x_2, ..., x_N\}$ .
- Each vector  $x_i$  is in dimension d;  $x_i \in \mathbb{R}^d$ .
- Empirical mean vector  $\mu = \frac{1}{N} \sum_{i=0}^{N} x_i$  ,  $\mu \in R^d$
- Centered set of vectors =  $\hat{X} = \{x_1 \mu, x_2 \mu, ..., x_N \mu\}$
- Empirical Covariance matrix  $\sum = \frac{1}{N} \hat{X} \hat{X}^T$  ,  $\sum \in R^{d \times d}$

### Whitening Transform

Set X of random vectors with a nonsingular covariance matrix  $\Sigma$ .

W is a  $d \times d$  matrix that satisfies:

$$W^TW = \sum^{-1}$$

W is not unique.

Whitening transform:

$$y = W\hat{x}$$
 ,  $Y = W\hat{X}$ 

#### Whitened CLIP - Motivation

#### Four main advantages of whitened CLIP (W-CLIP):

- 1. Purely data-driven.
- 2. Invertible Transform.
- 3. Computing W once, a-priori  $\rightarrow$  efficient use.
- 4. Whitened features have zero mean and unit variance.

#### IID Evaluation

Diagonal Score 
$$= \frac{\sum_{i} |\mathbf{\Sigma}_{i,i}|}{\sum_{i,j} |\mathbf{\Sigma}_{i,j}|}$$

Experiments use MS-COCO<sup>[2]</sup> validation set.



[2] Lin, Tsung-Yi, et al. "Microsoft coco: Common objects in context." Computer Vision-ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13. Springer International Publishing, 2014.

#### W-CLIP Likelihood

For a vector of IID, standard normal distributed variables:

$$P(x) = \frac{1}{(2\pi)^{\frac{d}{2}}} \exp\left(-\frac{1}{2}||x||^2\right) \qquad \ell(x) = \log P(x) = -\frac{1}{2} \left(d\log(2\pi) + ||x||^2\right)$$

→ Log-likelihood approximation based only on embeddings norm in W-CLIP.

#### Artifact Detection

Generated images with artifacts have lower likelihoods than similar real images.



# Text Complexity

Captions that are more complex result with lower log-likelihood.



# Domain Shift Sensitivity

- ImageNet-R<sup>[3]</sup> domains have higher norms compared to ImageNet.
- Realistic domains (graffiti) have lower norms compared to not realistic domains (sketch, video games).



[3] Hendrycks, Dan, et al. "The many faces of robustness: A critical analysis of out-of-distribution generalization." Proceedings of the IEEE/CVF international conference on computer vision. 2021

#### Generation Model Bias

Likelihood scores of generated images, using UnCLIP<sup>[4]</sup> are lower than the real images used to generate them.



#### Conclusions

- Introduced W-CLIP, an isotropic variation of CLIP latent space.
- First direct likelihood approximation of CLIP model.
- Likelihood approximations are sensitive to:
  - Text complexity.
  - Artifacts in images.
  - Domain shifts.
  - Generation model bias.

# Thank You