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TL;NR: Labels shouldn't just be for checking against correct answers; they should more likely act as a helpful reference during the learning process

Background and Motivation Our Solution: Predictive Consistency Learning e Multi-Step Inference: While initial predictions are more accurate
with less noise (smaller f), PCL aims to transfer this high accuracy
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* Traditionally, supervised learning models directly predict
labels as "standard answers." The assumption was that

to higher noise levels. Ideally, a single step could suffice, but

practically, gradually decreasing f from T'to 0 enhances accuracy

Data Input

labels were simpler than input data, focusing model @ — Eaiex , o +d(f"(x Y’) el by refining label information at different granularities.
design on ',“Pf‘t feat9re extraction. | L= d(f5(0,7) @ <o @ <o @ < e @ e The multi-step inference process uses the prediction from y, as a
’ -Ioweyer, with mcregsmgly complex labels 'f] deep . Random Noise ~ Noised Label ~ Noised Label Label hint for the next step's label. In each subsequent step, the noise is
earning, we reconsider: Can labels, when information- () Classic Supervised Learning (b) Predictive Consistency Learning gradually reduced, leading to increasingly precise predictions.
riChl beCOme Iea r“ing aids rather than jUSt ta rg etS? Figure 1. Illustration of predictive consistency learning (PCL). Unlike traditional approaches that predict labels directly from inputs, PCL Table 3. Results on S g -
predicts labels using inputs and noise-perturbed label hints and pursues predictive consistency across different noise steps. Ex eri men 'I'S Backh - I\: d'l = TS (Tn. ema:.l lj AegI:en;l:; Seore!
acKkoone vioae raming 1X€ CC. (0) core
1+ " " — P MobileNetV2dilated SL 75.53 33.13 54.33
" g ﬂmm ]] e In traditional supervised learning, £ ¢; = d(f,(X),y). ™y e
pY () CARDS . . . . . * Vision: Semantic Segmentation esNetS(dilated+ SL__ 7898 4149 604
B ((P)f)’% e Progressive Consistency Learning (PCL), inspired by consistency J e el 8132 4693 643
= (Prof) p -7 : - - '
sanx=l el 8 models, IS a new supervised learning paradigm. It tackles complex Test Image ren
Xaﬁf =|=((axs) S . . _ . . Ground Teuth & Classic SL t = 1000 t =691 t=413 t=191 t=49
) e=dt)-f (= x2:3 abels by progressively decomposing label information. Instead of just - S - -

predicting a final answer, PCL uses noisy labels as hints Y, (obtained
by same processes like discrete and continuous diffusion models)
at different time steps 7 to guide the model. PCL trains by:
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