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Background and Motivation Our Solution: Predictive Consistency Learning
• Traditionally, supervised learning models directly predict 

labels as "standard answers." The assumption was that 
labels were simpler than input data, focusing model 
design on input feature extraction. 


• However, with increasingly complex labels in deep 
learning, we reconsider: Can labels, when information-
rich, become learning aids rather than just targets?

• In traditional supervised learning, .

• Progressive Consistency Learning (PCL), inspired by consistency 

models, is a new supervised learning paradigm. It tackles complex 
labels by progressively decomposing label information. Instead of just 
predicting a final answer, PCL uses noisy labels as hints  (obtained 
by same processes like discrete and continuous diffusion models) 
at different time steps  to guide the model. PCL trains by: 

• Mapping noisy labels back to the true label , conditioned on . 
• Ensuring predictions from different noisy hints consistently 

approximate .
• The model samples two time steps  and aims for both accurate 

prediction to  and consistency between the two predictions. This 
cross-noise-level consistency helps the model learn robust 
representations and reduces reliance on perfect label hints. The PCL 
loss function is:
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ℒPCL(θ) = 𝔼[λ1d(fθ(x, yt, t), y) + λ1d(fθ(x, yt′￼, t′￼), y)) + λ2d(fθ(x, yt, t), fθ(x, yt′￼, t′￼))]

• Multi-Step Inference: While initial predictions are more accurate 
with less noise (smaller ), PCL aims to transfer this high accuracy 
to higher noise levels. Ideally, a single step could suffice, but 
practically, gradually decreasing  from  to  enhances accuracy 
by refining label information at different granularities.


• The multi-step inference process uses the prediction from  as a 
hint for the next step's label. In each subsequent step, the noise is 
gradually reduced, leading to increasingly precise predictions.

t

t T 0

yT

Experiments

•Vision: Semantic Segmentation

•Graph: N-Body Simulation

TL;NR: Labels shouldn't just be for checking against correct answers; they should more likely act as a helpful reference during the learning process

The figure is 
generated by 
Gemini.

Analogy: Learning Math Proofs

• Traditional supervised learning is like giving the 

student a theorem, letting them attempt the entire proof 
independently, and then just comparing their final 
answer to the complete solution to adjust their strategy.


• However, when the solution contains rich information, 
this isn't the best way to learn. 


• Humans usually refer to the full solution to grasp the 
thought process for complex problems. 


• When stuck, we need step-by-step hints and 
guidance, gradually reducing these prompts until we 
can solve it independently.

Multistep Inference with Consistency Mappings

• Single-Step Inference: PCL can achieve efficient predictions with a single 
forward pass using a randomly sampled noisy label  as a hint. Although 
this hint contains no information (making it similar to traditional direct 
prediction), PCL's improved training leads to superior prediction accuracy 
compared to traditional supervised learning.
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•Text: Supervised Fine-Tuning of LLMs
Can't make it to the conference in person. Please feel 
free to reach out to me via LinkedIn, WeChat, or email.
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