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Introduction to Flow Matching
Learn a flow map ψt : [0, 1]× Rd → Rd via the following ODE

d

dt
ψt(x) = ut(ψt(x)) ≈ vt(ψt(x);θ), (1)

with IC ψ0(x) = x ∼ pprior. It maps prior distribution p0 = pprior to data distribution
p1 ≈ pdata via:

pt(x) = p0
(
ψ−1

t (x)
)
det

[∂ψ−1
t

∂x
(x)

]
, ∀x ∈ p0,∀t ∈ [0, 1]. (2)

Figure: Generative Flow Map



Introduction to Flow Matching

Flow Matching for Generative Model

Flow Matching Loss:
LFM(θ) := Et,pt(x)

[∥∥vt(x , θ)− ut(x)
∥∥2] (3)

where pt(x) and u(x) are intractable.(Lipman et al.2023) proposed Conditional Flow
Matching loss:

LCFM(θ) := Et∼U [0,1],pdata(x1),pt(x |x1)

[∥∥vt(x , θ)− ut(x |x1)
∥∥2]

. (4)

where pt(x |x1) and ut(x |x1) are pre-defined, s.t.,

pt(x) =
∫

pt(x | x1)pdata(x1)dx1, ut(x) =
∫

ut(x |x1)
pt(x | x1)pdata(x1)

pt(x)
dx1 (5)

, e.g., Optimal transport (OT) path:

pt(x |xT ) = N (x |µt(xT ), σt(xT )2I ), with ut(x |x1) =
x1 − (1 − σmin)x
1 − (1 − σmin)t

. (6)

, where µt(x) = txT and σt(x) = 1 − (1 − σmin)t.

https://arxiv.org/abs/2210.02747


Relation to Continuity Equation

Continuity Equation

From (Villani, 2009), we can know the vector field ut generates a probability path pt
satisfies the continuity equation:

∂pt(x)
∂t

+∇ ·
(
pt(x)ut(x)

)
= 0

⇔∂pt(x)
∂t

= −
(
∇ · ut(x)

)
pt(x)− ut(x) · ∇pt(x)

(7)

with p0(x) = pprior(x) and p1(x) = pdata(x).

Similarly, the learned vt(x ;θ) with estimated path p̂t(x) and p0(x) = pprior(x) satisfy

∂p̂t(x)
∂t

= −
(
∇ · vt(x ;θ)

)
p̂t(x)− vt(x ;θ) · ∇p̂t(x) (8)

Notice: |u − v | is controlled by flow matching loss but |∇ · u −∇ · v | not!

https://link.springer.com/book/10.1007/978-3-540-71050-9


Error Defined by Continuity Equation

Error of Approximated Probability Path

Let ϵt := pt − p̂t be the error, satisfying the following transport equation{
∂tϵt +∇ ·

(
ϵtvt

)
= Lt ,

ϵ0(x) = 0,
(9)

where Lt = −pt
[
∇ · (ut − vt) + (ut − vt) · ∇ log pt

]
.

Duhamel’s formula:

ϵt
(
ϕt(x)

)
· det∇ϕt(x) = −

∫ t

0
ps
[(
∇ · (us − vs)

)
+ (us − vs) · ∇ log ps

]
· det∇ϕs(x)ds

(10)
where ϕ(x) is the flow induced by vt in d

dtϕt(x) = vt(ϕt(x);θ), and det∇ϕ(x) denotes
the determinant of the Jacobian matrix.



Error Defined by Continuity Equation

TV Error from Continuity Equation

Theorem Under mild assumptions, there exists a constant C > 0 such that

TV(pt , p̂t) ≤
1
2
Et,pt(x)

[∣∣∣∇ · ut(·)−∇ · vt(·;θ)
)∣∣∣]+ C

2
Et,pt(x)

[∣∣∣ut(·)− vt(·;θ)
∣∣∣] (11)

Note: Second term is already flow matching loss.



Divergence Loss

Flow Divergence Matching Loss

The TV error bound gives the following divergence loss:

LDM(θ) := Et,pt(x)

[∣∣∣∇ · (ut − vt) + (ut − vt) · ∇ log pt

∣∣∣] (12)

which is also intractable.

Conditional Flow Divergence Loss

LCDM(θ) := Et,pt(x |x1),p(x1)

[∣∣∣∣(∇ · ut(x |x1)−∇ · vt(x , θ)
)

+
(
ut(x |x1)− vt(x , θ)

)
· ∇ log pt(x |x1)

∣∣∣∣
]
.

(13)

which is an upper bound of LDM(θ).



Flow Matching with Divergence Loss

Improve Flow Matching with Aligning Flow Divergence

We propose the flow and divergence matching (FDM) loss:

LFDM = λ1LCFM + λ2LCDM, (14)

where λ1, λ2 > 0 are hyperparameters.



Density Modeling

Synthetic Data – Checkerboard Image Data – CIFAR10



Sequential Data Sampling with Guidance – DNA Sequence

• Train the models guided by a profile by providing it as additional input to the
vector field;

• Evaluate generated sequences using mean- squared error (MSE) between their
predicted and original regulatory activity.



Spatiotemporal Data – Dynamical System

Sample trajectories in dynamical systems using the initial states from the first few steps
as additional inputs to the model, with or without event guidance.



Spatiotemporal Data – Video Prediction

Autoregressive next-frame generation (prediction)
guided by several preceding frames, provided as addi-
tional inputs to the flow matching vector regressor.



Thank you!


