

Variance as a Catalyst: Efficient and Transferable Semantic Erasure Adversarial Attack for Customized Diffusion Models

Jiachen Yang¹ Yusong Wang¹ Yanmei Fang¹² Yunshu Dai¹ Fangjun Huang¹²

¹School of Cyber Science and Technology, Shenzhen Campus of Sun Yat-sen University ²Guangdong Provincial Key Laboratory of Information Security Technology

https://github.com/youyuanyi/variance-as-Catalyst

Motivation

Security risks of AIGC

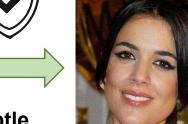
Reference Images

Privacy violation

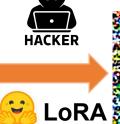
Fake Images

Reference Images

Privacy Protection



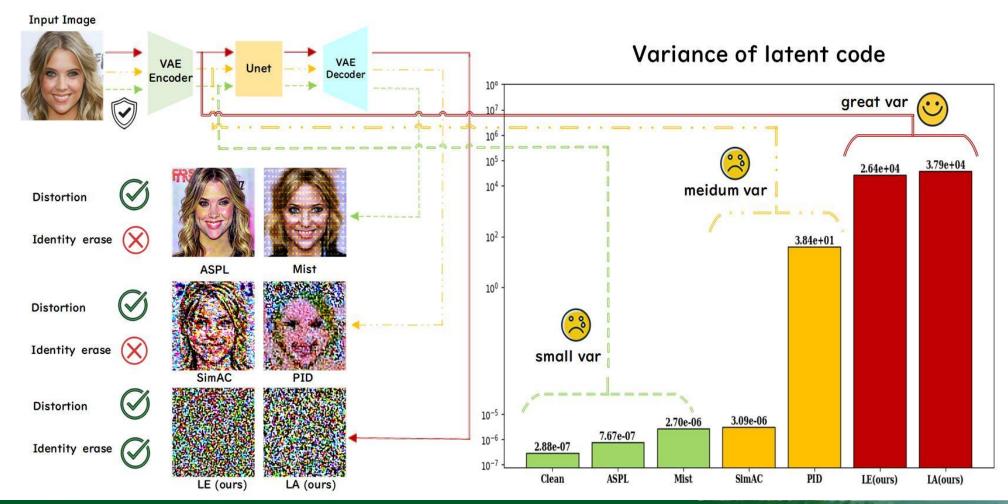
Adversarial Examples



Noisy Images

Innovation

- 1. Existing attack methods only cause image distortion and fail to achieve identity erasure.
- 2. We identify that larger VAE variance enables stronger semantic erasure.



Method

Gradient Consistency Theory: A framework of alignment between perturbation and variance growth.

1. Laplace Loss (LA)

$$\mathcal{L}_{Laplace} = rac{|\sigma^2 - \mu|}{b},$$

- Locally optimal updates
- Gradient-aligned

2. Lagrange Entropy Loss (LE)

$$\mathcal{L}_{LE} = -\sum_{j} \sigma_{j}^{2} \log(\sigma_{j}^{2}) + \lambda \left(\sum_{j} \sigma_{j}^{2} - c\right)^{2}$$

- Ample optimization space
- Stable optimization

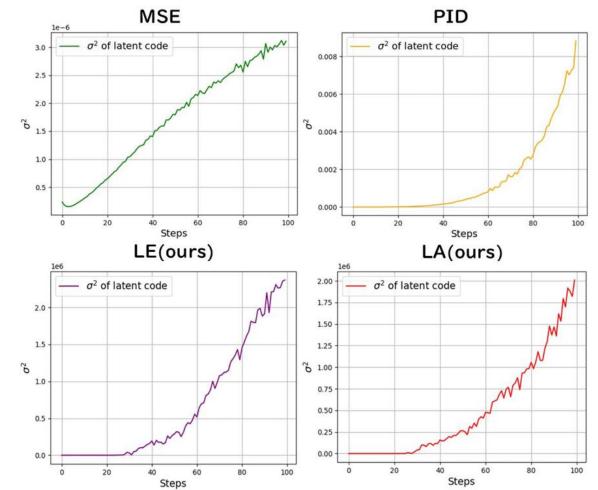


Figure 1. Variance Growth of Latent Codes Within 100 Optimization Steps

Figure 2. Comparison of various adversarial attacks in disrupting personalized image generation with DreamBooth

■ ISM: Identity Similarity Between Reference and Generated Images
■ Brisque: Image Natural Quality

Table 1: Comparing the performance of our method with baselines against DreamBooth (Ruiz et al., 2023) on CelebA-HQ and VGGFace2. The best result under each metric is marked with **bold**. The prompt used is "a photo of a sks person."

Method	CelebA-HQ			VGGFace2				
Method	ISM ↓	FDFR ↑	Brisque ↑	LPIPS ↑	ISM ↓	FDFR ↑	Brisque ↑	LPIPS ↑
No Defense	0.608	0.041	17.896	0.662	0.638	0.025	18.193	0.724
AdvDM (Liang et al., 2023)	0.424	0.307	24.215	0.798	0.142	0.944	47.862	0.868
ASPL (Van Le et al., 2023)	0.406	0.287	24.419	0.805	0.158	0.906	46.142	0.865
Mist (Liang & Wu, 2023)	0.249	0.169	13.981	0.707	0.246	0.257	18.324	0.756
MetaCloak (Liu et al., 2024b)	0.593	0.051	36.325	0.712	0.525	0.059	36.771	0.747
SimAC (Wang et al., 2024)	0.253	0.865	51.059	0.823	0.196	0.981	51.874	0.836
DisDiff (Liu et al., 2024a)	0.605	0.116	29.361	0.695	0.263	0.902	43.623	0.758
SDS- (Xue et al., 2023)	0.655	0.005	38.519	0.743	0.591	0.002	37.325	0.781
PID (Li et al., 2024)	0.069	0.938	85.533	0.899	0.046	0.968	86.946	0.945
LE(ours)	0	1	155.804	1.021	0	1	154.494	1.028
LA(ours)	0	1	155.845	0.959	0	1	155.845	1.031

Transferability

LoRA

SD1.5 → SD 2.1

SD1.5 → SDXL

LoRA

 $SD1.5 \rightarrow SD 3.5$

SD1.5 → FLUX.1 Dev

Method	SD2.1			SDXL				
Wiethod	ISM ↓	FDFR ↑	Brisque ↑	LPIPS ↑	ISM ↓	FDFR ↑	Brisque ↑	LPIPS ↑
No Defense	0.729	0.073	16.409	0.669	0.791	0.001	13.483	0.515
AdvDM (Liang et al., 2023)	0.532	0.313	39.369	0.704	0.765	0.019	18.419	0.539
ASPL (Van Le et al., 2023)	0.519	0.331	39.226	0.709	0.766	0.002	20.589	0.524
Mist (Liang & Wu, 2023)	0.179	0.231	18.097	0.677	0.583	0.126	24.143	0.622
MetaCloak (Liu et al., 2024b)	0.635	0.087	41.381	0.699	0.738	0.002	22.766	0.517
SimAC (Wang et al., 2024)	0.401	0.642	41.409	0.733	0.746	0.018	10.459	0.546
DisDiff (Liu et al., 2024a)	0.627	0.166	40.127	0.709	0.782	0	17.366	0.519
SDS- (Xue et al., 2023)	0.673	0.016	52.108	0.711	0.732	0	8.103	0.569
PID (Li et al., 2024)	0.089	0.887	91.461	0.949	0.602	0	17.848	0.545
LE(ours)	0	1	151.089	0.947	0.171	0.649	126.369	0.893
LA(ours)	0	1	154.724	0.955	0.178	0.401	102.815	0.822

Method	SD3.5			FLUX.1-dev				
Wethod	ISM ↓	FDFR ↑	Brisque ↑	LPIPS ↑	ISM ↓	FDFR ↑	Brisque ↑	LPIPS ↑
No Defense	0.587	0.001	0.699	0.589	0.705	0.001	7.722	0.598
AdvDM (Liang et al., 2023)	0.532	0.002	11.755	0.612	0.739	0.009	13.268	0.651
ASPL (Van Le et al., 2023)	0.543	0.001	11.541	0.621	0.743	0.004	12.991	0.641
Mist (Liang & Wu, 2023)	0.456	0.003	18.712	0.629	0.736	0.005	25.182	0.587
MetaCloak (Liu et al., 2024b)	0.469	0	21.861	0.599	0.727	0.007	23.027	0.618
SimAC (Wang et al., 2024)	0.495	0	9.251	0.606	0.735	0.004	3.601	0.645
DisDiff (Liu et al., 2024a)	0.535	0.003	10.252	0.601	0.708	0.021	13.488	0.639
SDS- (Xue et al., 2023)	0.499	0	46.701	0.617	0.741	0.003	24.258	0.609
PID (Li et al., 2024)	0.484	0.013	15.434	0.605	0.729	0.001	15.326	0.596
LE(ours)	0.217	0.241	65.903	0.803	0.257	0.204	58.423	0.828
LA(ours)	0.235	0.214	71.873	0.793	0.282	0.269	52.554	0.845

Attack Efficiency

	es:	
Method	Time/s ↓	GPU/MB↓
AdvDM (Liang et al., 2023)	18.63	8278.63
ASPL (Van Le et al., 2023)	189.95	34366.92
Mist (Liang & Wu, 2023)	18.81	8278.63
MetaCloak (Liu et al., 2024b)	1843.47	16955.00
SimAC (Wang et al., 2024)	124.57	38640.00
DisDiff (Liu et al., 2024a)	65.54	25960.50
SDS- (Xue et al., 2023)	18.61	8278.63
PID (Li et al., 2024)	241.31	4581.93
LE(ours)	7.34	4469.80
LA(ours)	8.47	4469.80

Defense Quality & Visual Quality

m	Defens	se Quality	Visual Quality			
17	IMS ↓	Brisque ↑	PSNR ↑	SSIM ↑		
4/255	0.631	22.385	14.244	0.414		
8/255	0	122.266	13.771	0.361		
0.05*	0	155.804	13.664	0.313		
16/255	0	155.845	12.301	0.271		

- Speed: Over 30× faster than existing SOTA methods
- Memory Usage: Requires less than 4.5 GB of GPU memory
- Our method still surpasses SOTA methods even when the perturbation budget is tightened to 8/255.

WikiArt Clean Generated LE Generated LA Generated Clean Image Baroque Cubism Expression Fauvism Romanticism

ControlNet-based Image Editing

