Robust Offline Reinforcement Learning with Linearly Structured f-Divergence Regularization

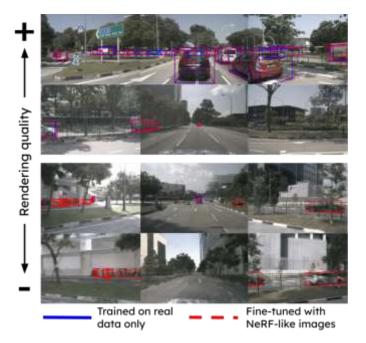
Cheng Tang¹, Zhishuai Liu², Pan Xu²

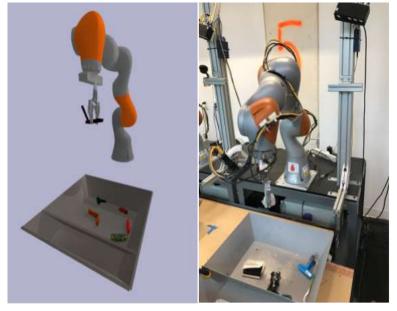
¹ University of Illinois Urbana-Champaign, ² Duke University

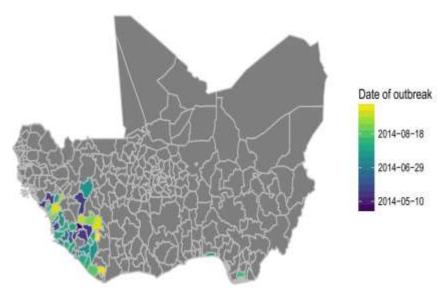
- 1 Introduction
- 2 Problem Formulation
- 3 Method
- 4 Theoretical Analysis
- 5 Experiment

Introduction

■ Offline RL calls for **robust policy**:







Autonomous Driving

• Robotic Learning

Disease Control

- [1] Lindström C, Hess G, Lilja A, et al. Are NeRFs ready for autonomous driving? Towards closing the real-to-simulation gap[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024: 4461-4471.
- [2] Bousmalis K, Levine S. Closing the simulation-to-reality gap for deep robotic learning[J]. Google Research Blog, 2017, 1.
- [3] Liu Z, Clifton J, Laber E B, et al. Deep spatial q-learning for infectious disease control[J]. Journal of Agricultural, Biological and Environmental Statistics, 2023, 28(4): 749-773.

Introduction

- **Distributionally Robust RL:** learn more robust policy through Reinforcement Learning
 - **d-rectangular DRMDP:** MDPs + uncertainty set

Value function

$$V_{h}^{\pi,P}(s) := \mathbb{E}^{P} \left[\sum_{t=h}^{H} r_{t}(s_{t}, a_{t}) \middle| s_{h} = s, \pi \right], \\ Q_{h}^{\pi,P}(s, a) := \mathbb{E}^{P} \left[\sum_{t=h}^{H} r_{t}(s_{t}, a_{t}) \middle| s_{h} = s, a_{h} = a, \pi \right]$$

$$\mathcal{U}_{h,i}^{\rho}(\mu_{h,i}^{0}) = \left\{ \mu : \mu \in \Delta(\mathcal{S}), D(\mu || \mu_{h,i}^{0}) \leq \rho \right\}.$$

$$\mathcal{U}_{h}^{\rho}(P_{h}^{0}) = \bigotimes_{(s,a) \in \mathcal{S} \times \mathcal{A}} \mathcal{U}_{h}^{\rho}(s, a; \mu_{h}^{0}),$$

(s, a) - uncertainty set

$$\mathcal{U}_{h,i}^{\rho}(\mu_{h,i}^{0}) = \left\{ \mu : \mu \in \Delta(\mathcal{S}), D(\mu||\mu_{h,i}^{0}) \leq \rho \right\}.$$
$$\mathcal{U}_{h}^{\rho}(P_{h}^{0}) = \bigotimes_{(s,a) \in \mathcal{S} \times \mathcal{A}} \mathcal{U}_{h}^{\rho}(s,a;\boldsymbol{\mu}_{h}^{0}),$$

Robust value function

$$V_h^{\pi,\rho}(s) = \inf_{P \in \mathcal{U}^{\rho}(P^0)} V_h^{\pi,P}(s), \quad \forall (h,s) \in [H] \times \mathcal{S}.$$

Motivation

- Drawbacks of d-rectangular DRMDP (hard constraint):
 - From theoretical perspective: need strong assumption on dual variables
 - From empirical perspective: solving duality problem in d-DRMDP is time-consuming
 - Existing work considers mainly TV divergence geometry, leaving blanks for cases with KL and χ^2
- RRMDP: applying regularization penalty term (soft constraint) to measuring the uncertainty
 - From Lagrange Duality perspective: DRMDP ⇔ RRMDP
 - The forfeit of uncertainty set constraint makes the dual problem easier, leading to potential improvement on computation efficiency and theoretical analysis

- 1 Introduction
- 2 Problem Formulation
- 3 Method
- 4 Theoretical Analysis
- 5 Experiment

Problem Formulation

■ RRMDP (Robust Regularized Markov Decision Process): RRMDP(S, A, H, P^0 , r, λ , D, F)

- \bullet Regularized robust parameter λ , probability divergence D, feasible set of all perturbed transition kernels F
- Regularized robust value function and Q-function:

$$V_h^{\pi,\lambda}(s) = \inf_{P \in \mathcal{F}} \mathbb{E}^P \bigg[\sum_{t=h}^H \big[r_t(s_t,a_t) + \underbrace{\lambda D(P_t(|s_t,a_t) \| P_t^0(\cdot|s_t,a_t))}_{t} \big] | s_h = s,\pi \bigg], \qquad \text{Penalty on divergence with nominal kernel}$$

$$Q_h^{\pi,\lambda}(s,a) = \inf_{P \in \mathcal{F}} \mathbb{E}^P \bigg[\sum_{t=h}^H \big[r_t(s_t,a_t) + \underbrace{\lambda D(P_t(\cdot|s_t,a_t) \| P_t^0(\cdot|s_t,a_t))}_{t} \big] | s_h = s,a_h = a,\pi \bigg].$$

• Offline dataset and Learning goal: given K trajectory $\{(s_h^{\tau}, a_h^{\tau}, r_h^{\tau})\}_{h=1}^{H}$ and find policy $\hat{\pi}$ to minimize the robust Suboptimality gap: SubOpt $(\hat{\pi}, s_1, \lambda) := V_1^{\star, \lambda}(s_1) - V_1^{\hat{\pi}, \lambda}(s_1)$.

■ Linear MDP:

- Known feature mapping $\phi: s \times a \to R^d$, $\sum_i \phi_i(s, a) = 1$, $\phi_i(s, a) \ge 0$
- Linear reward function and nominal transition kernel class F

$$r_h(s,a) = \langle \phi(s,a), \theta_h \rangle, \ P_h^0(\cdot|s,a) = \langle \phi(s,a), \mu_h^0(\cdot) \rangle$$

- 1 Introduction
- 2 Problem Formulation
- 3 Method
- 4 Theoretical Analysis
- 5 Experiment

Dynamic programming principles

■ Robust regularized Bellman Equation:

$$Q_{h}^{\pi,\lambda}(s,a) = r_{h}(s,a) + \inf_{\boldsymbol{\mu}_{h} \in \Delta(\mathcal{S})^{d}, P_{h} = \langle \boldsymbol{\phi}, \boldsymbol{\mu}_{h} \rangle} \left[\mathbb{E}_{s' \sim P_{h}(\cdot|s,a)} \left[V_{h+1}^{\pi,\lambda}(s') \right] + \lambda \langle \boldsymbol{\phi}(s,a), \boldsymbol{D}(\boldsymbol{\mu}_{h}||\boldsymbol{\mu}_{h}^{0}) \rangle \right],$$

$$V_{h}^{\pi,\lambda}(s) = \mathbb{E}_{a \sim \pi(\cdot|s)} \left[Q_{h}^{\pi,\lambda}(s,a) \right].$$

■ Existence of optimal policy

Proposition 3.3. Under the setting of d-rectangular linear RRMDP, there exists a deterministic and stationary policy π^* , such that for any $(h, s, a) \in [H] \times \mathcal{S} \times \mathcal{A}$,

$$V_h^{\pi^{\star},\lambda}(s) = V_h^{\star,\lambda}(s), Q_h^{\pi^{\star},\lambda}(s,a) = Q_h^{\star,\lambda}(s,a). \tag{3.7}$$

Method - Framework

■ Pessimism based meta algorithm

- Step 1: estimate w_h^{λ} by solving dual problem
- Step 2: construct pessimism penalty $\Gamma_h(\cdot,\cdot)$
- Step 3: compute pessimistic Q-function

Algorithm 1 R2PVI under general f-divergence

Require: Dataset \mathcal{D} , Regularizer $\lambda > 0$

- 1: init $\hat{V}_{H+1}^{\lambda}(\cdot) = 0$
- 2: **for** episode $h = H, \dots, 1$ **do** 3: Compute $\mathbf{\Lambda}_h \leftarrow \sum_{\tau=1}^K \phi(s_h^{\tau}, a_h^{\tau}) \phi(s_h^{\tau}, a_h^{\tau})^{\top} + \gamma \mathbf{I}$
- 4: $\hat{w}_{h,i}^{\lambda}(\alpha) \leftarrow \left[\mathbf{\Lambda}_{h}^{-1} \left[\sum_{\tau=1}^{K} \boldsymbol{\phi}(s_{h}^{\tau}, a_{h}^{\tau}) f^{*} \left(\frac{\alpha \hat{V}_{h+1}^{\lambda}(s)}{\lambda} \right) \right]^{i}$ Duality Estimation for general f-divergence

 → Duality Estimation for general f-divergence
- 5: $\hat{w}_{h,i}^{\lambda} \leftarrow \sup_{\alpha \in \mathbb{R}} \{-\lambda \hat{w}_{h,i}^{\lambda}(\alpha) + \alpha\}$
- Construct the penalty $\Gamma_h(\cdot,\cdot)$
- Estimate $\hat{Q}_h^{\lambda}(\cdot,\cdot) \leftarrow \overline{\min}\{\langle \boldsymbol{\phi}(\cdot,\cdot), \boldsymbol{\theta}_h + \hat{\boldsymbol{w}}_h^{\lambda} \rangle \Gamma_h(\cdot,\cdot), H=h+1\}^+$.
- Construct $\hat{\pi}_h(\cdot|\cdot) \leftarrow \operatorname{argmax}_{\pi_h} \langle \hat{Q}_h^{\lambda}(\cdot,\cdot), \hat{\pi}_h(\cdot|\cdot) \rangle_{\mathcal{A}}$ and $\hat{V}_h^{\lambda}(\cdot) \leftarrow \langle \hat{Q}_h^{\lambda}(\cdot, \cdot), \hat{\pi}_h(\cdot|\cdot) \rangle_{\mathcal{A}}$.
- 9: end for

- 1 Introduction
- 2 Problem Formulation
- 3 Method
- 4 Theoretical Analysis
- 5 Experiment

Instance-Dependent Upper Bound

■ We provide Instance-dependent upper bound for our algorithms:

Theorem 5.2. Under Assumption 3.1, for any $\delta \in (0,1)$, if we set $\gamma = 1$ and $\Gamma_h(s,a) = \beta \sum_{i=1}^d \|\phi_i(\cdot,\cdot)\mathbf{1}_i\|_{\mathbf{\Lambda}_h^{-1}}$ in Algorithm 1,

- (TV) $\beta = 16Hd\sqrt{\xi_{\text{TV}}}$, where $\xi_{\text{TV}} = 2\log(1024Hd^{1/2}K^2/\delta)$;
- (KL) $\beta = 16d\lambda e^{H/\lambda} \sqrt{(H/\lambda + \xi_{KL})}$, where $\xi_{KL} = \log(1024d\lambda^2 K^3 H/\delta)$;
- $(\chi^2) \beta = 8dH^2(1+1/\lambda)\sqrt{\xi_{\chi^2}}$, where $\xi_{\chi^2} = \log(192K^5H^6d^3(1+H/2\lambda)^3/\delta)$,

then with probability at least $1 - \delta$, for all $s \in \mathcal{S}$, the suboptimality of Algorithm 1 satisfies:

SubOpt
$$(\hat{\pi}, s, \lambda) \leq 2\beta \sup_{P \in \mathcal{U}^{\lambda}(P^{0})} \sum_{h=1}^{H} \mathbb{E}^{\pi^{*}, P} \Big[\sum_{i=1}^{d} \|\phi_{i}(s, a) \mathbf{1}_{i}\|_{\Lambda_{h}^{-1}} |s_{1} = s \Big].$$

$$\Phi(\Lambda_{h}^{-1}, s): \text{uncertainty function}$$

- The upper bound relies on a novel uncertainty function
- We further establish **information-theoretic lower bound** to illustrate the necessity of $\Phi(\Lambda_h^{-1}, s)$

Instance-Independent Upper Bound

■ Comparison of the Suboptimality gap with dataset coverage

Algorithm	Setting	Divergence	Coverage	Suboptimality Gap
DRPVI (Liu & Xu, 2024b)	d-DRMDP	TV	full	$\tilde{O}(dH^2K^{-1/2})$
DROP (Wang et al., 2024a)	$d ext{-}\mathrm{DRMDP}$	TV	robust partial	$\tilde{O}(d^{3/2}H^2K^{-1/2})$
P2MPO (TV) (Blanchet et al., 2024)	$d ext{-}DRMDP$	TV	robust partial	$\tilde{O}(d^2H^2K^{-1/2})$
R2PVI-TV (ours)	d-RRMDP	TV	regularized partial	$\tilde{O}(d^2H^2K^{-1/2})$
DRVI-L (Ma et al., 2022) P2MPO (KL) (Blanchet et al., 2024)	d-DRMDP	KL	robust partial	$\tilde{O}(\sqrt{\underline{\beta}}e^{H/\underline{\beta}}d^2H^{3/2}K^{-1/2})^{\frac{1}{2}}$
	$d ext{-}DRMDP$	KL	robust partial	$\tilde{O}(e^{H/\underline{\beta}}d^2H^2\rho^{-1}K^{-1/2})^\star$
R2PVI-KL (ours)	d-RRMDP	KL	regularized partial	$\tilde{O}(\sqrt{\lambda}e^{H/\lambda}d^2H^{3/2}K^{-1/2})$
R2PVI-χ² (ours)	d-RRMDP	χ^2	regularized partial	$\tilde{O}(d^2H^3(1+\lambda^{-1})K^{-1/2})$

^{*} The * denotes that the result requires an additional assumption on the KL dual variable, which is not required in R2PVI

- For TV divergence, R2PVI achieves nearly same suboptimality gap with SOTA
- For KL divergence, R2PVI needs no extra assumption to guarantee the closeness form solution
- For χ^2 divergence, we are the first to give theoretical guarantee under linear MDP setting

- 1 Introduction
- 2 Problem Formulation
- 3 Method
- 4 Theoretical Analysis
- 5 Experiment

Experiment

■ We want to explore:

- The robustness of R2PVI when facing adversarial dynamics
- The role of regularizer λ in determining the robustness of R2PVI
- The computation cost of R2PVI compared to other robust algorithms

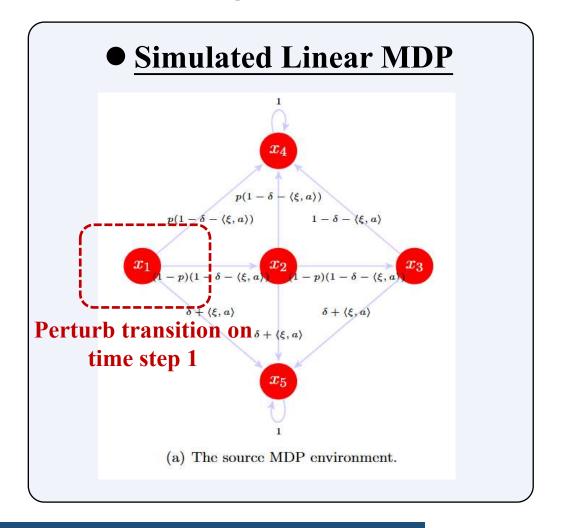
■ Baselines

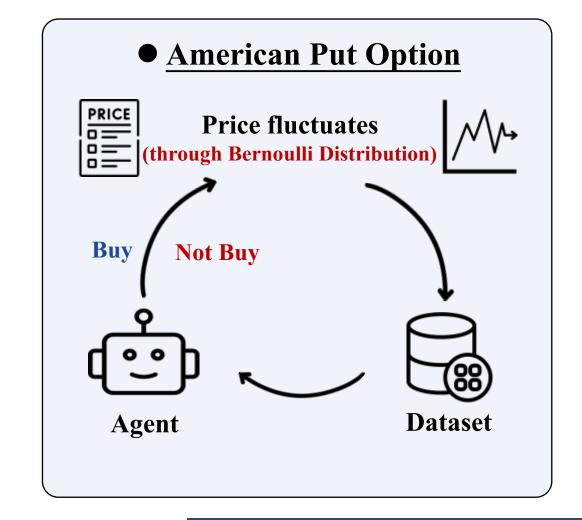
Method	PEVI	DRPVI	DRVI-L	R2PVI (ours)
Framework	MDP	d-DRMDP	d-DRMDP	d-RRMDP
Divergence	/	TV	KL	$TV/KL/\chi^2$

^{*} We don't compare DROP and P2MPO mentioned in the upper bound due to the lack of experiment and code base in such works.

Experiment

■ Task settings





Results

0.8

■ Evaluation

