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Introduction-1

▪ Vision Transformer (ViT) :
▪ ViT Demonstrated superior accuracy in diverse Computer Vision Tasks

▪ However, their large size and computational cost limit their use in resource-constrained 
environments (e.g., edge, mobile).

▪ Consequently, various ViT compression studies have been conducted

Vision Transformer Architecture
(An image is worth 16x16 words: Transformers for image recognition at scale, ICLR, 2021) 



Introduction-2

▪ Motivations : 
▪ Common compression techniques, such as Low-Rank Approximation and Quantization, 

have been explored

▪ Low-Rank Approximation (LRA) :

▪ Singular value decomposition-based FC layer compression methods

▪ LRA studies performed knowledge-distillation based fine-tuning to recover accuracy

▪ However, reducing the fundamental information loss in the weight matrix could 
enable even higher accuracy

▪ Quantization : 

▪ Compressing FP32 model weights and activations by quantizing them to lower bit-
precision

▪ When used in conjunction with LRA, it has the potential to achieve greater model 
size reduction than a single method

▪ However, to date, there have been no attempts to simultaneously apply both LRA and 
Quantization

▪ Integrating both methods requires developing quantization techniques highly 
compatible with LRA



Introduction-3

▪ Goals : 
▪ Inference Efficiency : Effectively combining LRA and quantization to achieve higher 

compression ratios and faster inference speed than previous single-method approaches

▪ High Accuracy : Minimizing accuracy degradation when applying LRA and addressing 
outlier issues in combination with quantization to achieve high accuracy

◈ Approach

▪ Developing a robust LRA method : Proposing a low-cost error compensation matrix 
design and an initialization method to reduce weight information loss 

▪ Block-Level Knowledge Distillation: Achieving superior generalization performance using 
encoder block-level knowledge distillation

▪ LRA-Aware Quantization : Proposing a distribution scaling method to minimize outlier 
effects when applying LRA.

▪ Ultimately, combining LRA and quantization to achieve a high model compression 
ratio and low inference latency with minimal accuracy degradation

Ours



LRA-QViT : Overview

▪ LRA-QViT : Proposed ViT Compression Framework

Ours



LRA-QViT : Reparameterizable branch-based LRA (RB-LRA)

▪ RB-LRA : Reparameterizable branch-based low-rank approximation
▪ Design of FC Layers with a reparameterizable addition branch in the form of a low-rank 

matrix to compensate for LRA errors

▪ Optimize the ෡𝑽 and ෡𝑼 matrices through fine-tuning

▪ Apply reparameterization during inference → integrate into a single branch

▪ Reduction in parameter and computational cost

𝒚 ≈ 𝑽′ 𝑼′𝑻𝒙 + ෡𝑬𝒙 = 𝑽′ + ෡𝑽 𝑼′𝑻 + ෡𝑼𝑻 𝒙
(1)

𝒘𝒉𝒆𝒓𝒆 ෡𝑬𝒙 = 𝑽′෡𝑼𝑻 + ෡𝑽𝑼′𝑻 + ෡𝑽෡𝑼𝑻 𝒙

<RB-LRA : Reparameterizable Branch-based Low-Rank Approximation>



LRA-QViT : Reparameterizable branch-based LRA (RB-LRA)

▪ Weight Reconstruction
▪ Initialize RB-LRA using the LRA removal matrix.

▪ Matrix Removed During LRA :

▪ Original FC Layer Reconstruction with Removed Matrix

▪ 𝑼𝛁 matrix : Reconstruction by Concat → Residual Branch Reconstruction: Impossible → ෡𝑼 : zero 

▪ 𝑺𝛁𝑽𝛁matrix : Reconstruction by Addition → Residual Branch Reconstruction: Possible→ ෡𝑽 : 𝑺𝛁𝑽𝛁

𝒚′ = 𝑼𝑻𝒙 = 𝑪𝒐𝒏𝒄𝒂𝒕(𝑼′𝑻𝒙,𝑼𝑻
𝛁𝒙)

(3)
𝒚 = 𝑽𝑺𝑻𝒚′ = 𝑽′𝒚′

[:𝒓,:]
+ (𝑺𝛁𝑽𝛁)

𝑻𝒚′
[𝒓:,:]

<WR : Weight Reconstruction>

൞

𝑼𝛁 = 𝑼[:,𝒓:]

𝑺𝛁 = 𝑺[𝒓:,𝒓:]
𝑽𝛁 = 𝑽[𝒓:,:]

(2)



LRA-QViT : Weight-Aware Distribution Scaling (WADS)

▪ WASD : Weight-aware distribution scaling

▪ Calculate Weight Quantization Error
▪ Scaling Applied Exclusively to Layers Below Threshold

▪ Optimal Scaling Vector Search

▪ Weight Quantization Error-Aware Loss Function Design

▪ Achieving Optimal Accuracy

▪ WADS-based Quantization

▪ s = quantization scaling factor 

<WADS : Weight-Aware Distribution Scaling>

ℒ(𝒘) = 𝑸 𝒘 −𝒘 𝟐 (4)

𝒂′ = argmin
𝛼

𝑸
𝒙

𝜶
𝑸 𝜶𝒘 − 𝒙𝒘

𝟐

+ 𝑸 𝒘 −𝒘 𝟐 (5)

𝒀𝒒 = 𝑸
𝒙

𝜶
𝑸 𝜶𝒘

𝑸 𝒙 = 𝒄𝒍𝒊𝒑 𝒓𝒐𝒖𝒏𝒅
𝒙

𝒔
, −𝟐𝒃−𝟏, 𝟐𝒃−𝟏 − 𝟏

(6)



Experimental Results-1 (RB-LRA)

▪ Evaluation of RB-LRA : ImageNet
▪ RB-LRA : Params → -45.7% Accuracy Drop → 0.73% (DeiT-B)

▪ Other Models : Achieved SOTA Accuracy

▪ Other Applications 
▪ Object Detection / Instance Segmentation :

▪ Params → –7.1M AP Drop → -0.3% 

▪ Pose Estimation : 

▪ Params → -25.7% AP / AR Drop → -0.9%

▪ Language Processing 

▪ Params → -29.7% PPL  → +0.7%

▪ Speech Recognition

▪ Params → -26.3% WER  → +0.2%
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Experimental Results-2 (RB-LRA + WADS)

▪ Evaluation WADS : ImageNet
▪ Baseline : RB-LRA

▪ Achieving the highest accuracy

▪ Demonstrating excellent compatibility 

with proposed RB-LRA

▪ Superiority of the Unified Framework : 

   Model Size Reduction: Up to 87.2%

▪ Inference Latency on Real Devices
▪ Android : Cortex-X3

▪ Edge : NVIDIA Jetson AGX Xavier

▪ RB-LRA: Up to 2.1x Acceleration

▪ RB-LRA + WADS: Up to 3.2x Acceleration

▪ Demonstrating On-Device Acceleration of the 

Proposed RB-LRA + WADS Framework
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Thank you!
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