

LRA-QViT: Integrating Low-Rank Approximation and Quantization for Robust and Efficient Vision Transformers

Beom Jin Kang, Nam Joon Kim, Hyun Kim*

Seoul National University of Science and Technology, Seoul, Korea {beomjin, rlarla2626, hyunkim}@seoultech.ac.kr

Introduction-1

- Vision Transformer (ViT) :
 - ViT Demonstrated superior accuracy in diverse Computer Vision Tasks
 - However, their large size and computational cost limit their use in resource-constrained environments (e.g., edge, mobile).
 - Consequently, various ViT compression studies have been conducted

Vision Transformer Architecture

(An image is worth 16x16 words: Transformers for image recognition at scale, ICLR, 2021)

Introduction-2

Motivations :

- Common compression techniques, such as Low-Rank Approximation and Quantization, have been explored
- Low-Rank Approximation (LRA) :
 - Singular value decomposition-based FC layer compression methods
 - LRA studies performed knowledge-distillation based fine-tuning to recover accuracy
 - However, reducing the fundamental information loss in the weight matrix could enable even higher accuracy

• Quantization :

- Compressing FP32 model weights and activations by quantizing them to lower bitprecision
- When used in conjunction with LRA, it has the potential to achieve greater model size reduction than a single method
- However, to date, there have been no attempts to simultaneously apply both LRA and Quantization
- Integrating both methods requires developing quantization techniques highly compatible with LRA

Introduction-3

Goals:

- Inference Efficiency: Effectively combining LRA and quantization to achieve higher compression ratios and faster inference speed than previous single-method approaches
- High Accuracy: Minimizing accuracy degradation when applying LRA and addressing outlier issues in combination with quantization to achieve high accuracy

Approach

- Developing a robust LRA method : Proposing a low-cost error compensation matrix design and an initialization method to reduce weight information loss
- Block-Level Knowledge Distillation: Achieving superior generalization performance using encoder block-level knowledge distillation
- LRA-Aware Quantization: Proposing a distribution scaling method to minimize outlier effects when applying LRA.
- Ultimately, combining LRA and quantization to achieve a high model compression ratio and low inference latency with minimal accuracy degradation

LRA-QViT: Overview

- LRA-QViT: Proposed ViT Compression Framework

Ours

LRA-QViT: Reparameterizable branch-based LRA (RB-LRA)

- RB-LRA: Reparameterizable branch-based low-rank approximation
 - Design of FC Layers with a reparameterizable addition branch in the form of a low-rank matrix to compensate for LRA errors

$$y \approx V'(U'^T x) + \widehat{E}x = (V' + \widehat{V})(U'^T + \widehat{U}^T)x$$

$$where \widehat{E}x = (V'\widehat{U}^T + \widehat{V}U'^T + \widehat{V}\widehat{U}^T)x$$
(1)

- Optimize the \hat{V} and \hat{U} matrices through fine-tuning
- Apply reparameterization during inference → integrate into a single branch
- Reduction in parameter and computational cost

(2) Inference

< RB-LRA: Reparameterizable Branch-based Low-Rank Approximation>

LRA-QViT: Reparameterizable branch-based LRA (RB-LRA)

- Weight Reconstruction
 - Initialize RB-LRA using the LRA removal matrix.
 - Matrix Removed During LRA :

$$\begin{cases} U_{\nabla} = U_{[:,r:]} \\ S_{\nabla} = S_{[r:,r:]} \\ V_{\nabla} = V_{[r:,:]} \end{cases}$$
(2)

Original FC Layer Reconstruction with Removed Matrix

$$y' = U^T x = Concat(U'^T x, U^T \nabla x)$$

$$y = VS^T y' = V' y'_{[:r::]} + (S \nabla V \nabla)^T y'_{[r:::]}$$
(3)

- $U_{
 abla}$ matrix: Reconstruction by Concat ightarrow Residual Branch Reconstruction: Impossible ightarrow \widehat{U} : zero
- $S_{\nabla}V_{\nabla}$ matrix: Reconstruction by Addition \rightarrow Residual Branch Reconstruction: Possible $\rightarrow \widehat{V}: S_{\nabla}V_{\nabla}$

<WR: Weight Reconstruction>

LRA-QViT: Weight-Aware Distribution Scaling (WADS)

WASD: Weight-aware distribution scaling

- Calculate Weight Quantization Error
 - Scaling Applied Exclusively to Layers Below Threshold

$$\mathcal{L}(w) = \|Q(w) - w\|^2 \tag{4}$$

- Optimal Scaling Vector Search
 - Weight Quantization Error-Aware Loss Function Design
 - Achieving Optimal Accuracy

$$a' = \underset{\alpha}{\operatorname{argmin}} \left\| Q\left(\frac{x}{\alpha}\right) Q(\alpha w) - xw \right\|^2 + \|Q(w) - w\|^2$$
 (5)

- WADS-based Quantization
 - s = quantization scaling factor

$$Y_{q} = Q\left(\frac{x}{\alpha}\right)Q(\alpha w)$$

$$Q(x) = clip\left(round\left(\frac{x}{s}\right), -2^{b-1}, 2^{b-1} - 1\right)$$
(6)

< WADS: Weight-Aware Distribution Scaling>

Experimental Results-1 (RB-LRA)

- Evaluation of RB-LRA : ImageNet
 - RB-LRA : Params → -45.7% Accuracy Drop → 0.73% (DeiT-B)
 - Other Models : Achieved SOTA Accuracy
- Other Applications
 - Object Detection / Instance Segmentation :
 - Params \rightarrow -7.1M AP Drop \rightarrow -0.3%
 - Pose Estimation :
 - Params → -25.7% AP / AR Drop → -0.9%
 - Language Processing
 - Params \rightarrow -29.7% PPL \rightarrow +0.7%
 - Speech Recognition
 - Params \rightarrow -26.3% WER \rightarrow +0.2%

Model	Method	Params(M)	PPL	WER
GPT-2 Medium	Baseline	354.8	18.72	-
	RB-LRA	249.4 (-29.7%)	19.51	-
Conformer-L	Baseline	116.8	-	5.4
	RB-LRA	86.2(-26.3%)	-	5.6

Model	Method	KD Method	Params(M)	GFLOPs	ACC.(%)	Diff.(%)
	Baseline	-	5.7	2.2	72.17	-
DeiT-T	LRA	-	5.2 (-8.8%)	1.8	68.40	-3.77
Dell-1	RB-LRA	-	5.2 (-8.8%)	1.8	70.92	-1.25
	RB-LRA + KD	Feature	5.2 (-8.8%)	1.8	71.70	-0.47
	Baseline	-	86.6	33.7	81.85	-
	LRA	-	44.4 (-45.7%)	17.1	78.76	-3.09
DeiT-B	PELA (Guo et al., 2024)	Feature	44.1 (-49.1%)	17.0	81.00	-0.85
	RB-LRA	-	44.4 (-45.7%)	17.1	79.93	-1.92
	RB-LRA + KD	Feature	44.4 (-45.7%)	17.1	81.12	-0.73
	Baseline	-	28.3	8.6	81.37	-
Swin-T	LRA	-	21.1 (-25.4%)	6.7	77.30	-4.07
SWIII-1	RB-LRA	-	21.1 (-25.4%)	6.7	80.27	-1.1
	RB-LRA + KD	Feature	21.1 (-25.4%)	6.7	80.49	-0.88
	Baseline	-	88.1	30.3	83.47	-
	LRA	-	60.1 (-31.8%)	21.1	81.75	-1.72
Swin-B	AAFM+GFM (Yu & Wu, 2023)	Feature	60.2 (-31.7%)	-	82.99	-0.48
SWIII-B	PELA (Guo et al., 2024)	Feature	62.2 (-29.4%)	21.3	82.50	-0.97
	RB-LRA		60.1 (-31.8%)	21.1	82.88	-0.59
	RB-LRA+KD	Feature	60.1 (-31.8%)	21.1	83.44	-0.03

Backbone	Params(M)	GFLOPs	AP^{box}	AP^{mask}
ResNet-50 (He et al., 2016)	44.4	250.2	40.0	36.1
PVT-M (Wang et al., 2021)	63.9	351.2	42.0	39.0
Swin-T (Liu et al., 2021)	47.8	256.8	42.7	39.3
Swin-T + RB-LRA	40.6	241.2	42.5	39.0

Model	Method	Params(M)	AP	AR
V:TDoor D	Baseline	89.9	75.9	81.0
ViTPose-B	RB-LRA	66.8 (-25.7%)	75.0	80.4

Experimental Results-1 (RB-LRA)

- Evaluation of RB-LRA: ImageNet
 - RB-LRA : Params → -45.7% Accuracy Drop → 0.73% (DeiT-B)
 - Other Models : Achieved SOTA Accuracy
- Other Applications
 - Object Detection / Instance Segmentation :
 - Params \rightarrow -7.1M AP Drop \rightarrow -0.3%
 - Pose Estimation :
 - Params → -25.7% AP / AR Drop → -0.9%
 - Language Processing
 - Params \rightarrow -29.7% PPL \rightarrow +0.7%
 - Speech Recognition
 - Params \rightarrow -26.3% WER \rightarrow +0.2%

Model	Method	Params(M)	PPL	WER
GPT-2 Medium	Baseline	354.8	18.72	-
	RB-LRA	249.4 (-29.7%)	19.51	-
Conformer-L	Baseline	116.8	-	5.4
	RB-LRA	86.2(-26.3%)	-	5.6

3 %	(Dell-R)					
Model	Method	KD Method	Params(M)	GFLOPs	ACC.(%)	Diff.(%)
DeiT-T	Baseline	-	5.7	2.2	72.17	-
	LRA	-	5.2 (-8.8%)	1.8	68.40	-3.77
	RB-LRA	•	5.2 (-8.8%)	1.8	70.92	-1.25
	RB-LRA + KD	Feature	5.2 (-8.8%)	1.8	71.70	-0.47
	Baseline	-	86.6	33.7	81.85	-
	LRA	-	44.4 (-45.7%)	17.1	78.76	-3.09
DeiT-B	PELA (Guo et al., 2024)	Feature	44.1 (-49.1%)	17.0	81.00	-0.85
	RB-LRA	-	44.4 (-45.7%)	17.1	79.93	-1.92
	RB-LRA + KD	Feature	44.4 (-45.7%)	17.1	81.12	-0.73
	Baseline	-	28.3	8.6	81.37	-
Swin-T	LRA	-	21.1 (-25.4%)	6.7	77.30	-4.07
SWIII-1	RB-LRA	-	21.1 (-25.4%)	6.7	80.27	-1.1
	RB-LRA + KD	Feature	21.1 (-25.4%)	6.7	80.49	-0.88
	Baseline	-	88.1	30.3	83.47	-
	LRA	-	60.1 (-31.8%)	21.1	81.75	-1.72
Swin-B	AAFM+GFM (Yu & Wu, 2023)	Feature	60.2 (-31.7%)	-	82.99	-0.48
SWIII-D	PELA (Guo et al., 2024)	Feature	62.2 (-29.4%)	21.3	82.50	-0.97
	RB-LRA	-	60.1 (-31.8%)	21.1	82.88	-0.59
	RB-LRA+KD	Feature	60.1 (-31.8%)	21.1	83.44	-0.03
	Backbone	Params(M)	GFLOPs	AP^{box}	AP^{mash}	e

Backbone	Params(M)	GFLOPs	AP^{box}	AP^{mask}
ResNet-50 (He et al., 2016)	44.4	250.2	40.0	36.1
PVT-M (Wang et al., 2021)	63.9	351.2	42.0	39.0
Swin-T (Liu et al., 2021)	47.8	256.8	42.7	39.3
Swin-T + RB-LRA	40.6	241.2	42.5	39.0

Model	Method	Params(M)	AP	AR
WiTDosa D	Baseline	89.9	75.9	81.0
ViTPose-B	RB-LRA	66.8 (-25.7%)	75.0	80.4

Experimental Results-1 (RB-LRA)

- Evaluation of RB-LRA : ImageNet
 - RB-LRA : Params → -45.7% Accuracy Drop → 0.73% (DeiT-B)
 - Other Models : Achieved SOTA Accuracy
- Other Applications
 - Object Detection / Instance Segmentation :
 - Params \rightarrow -7.1M AP Drop \rightarrow -0.3%
 - Pose Estimation :
 - Params → -25.7% AP / AR Drop → -0.9%
 - Language Processing
 - Params \rightarrow -29.7% PPL \rightarrow +0.7%
 - Speech Recognition
 - Params \rightarrow -26.3% WER \rightarrow +0.2%

Model	Method	Params(M)	PPL	WER
GPT-2 Medium	Baseline	354.8	18.72	-
	RB-LRA	249.4 (-29.7%)	19.51	-
Conformer-L	Baseline	116.8	-	5.4
	RB-LRA	86.2(-26.3%)	-	5.6

Model	Method	KD Method	Params(M)	GFLOPs	ACC.(%)	Diff.(%)
1110001	Baseline	-	5.7	2.2	72.17	-
р тт	LRA	-	5.2 (-8.8%)	1.8	68.40	-3.77
DeiT-T	RB-LRA		5.2 (-8.8%)	1.8	70.92	-1.25
	RB-LRA + KD	Feature	5.2 (-8.8%)	1.8	71.70	-0.47
	Baseline	-	86.6	33.7	81.85	-
	LRA	-	44.4 (-45.7%)	17.1	78.76	-3.09
DeiT-B	PELA (Guo et al., 2024)	Feature	44.1 (-49.1%)	17.0	81.00	-0.85
	RB-LRA	-	44.4 (-45.7%)	17.1	79.93	-1.92
	RB-LRA + KD	Feature	44.4 (-45.7%)	17.1	81.12	-0.73
	Baseline	-	28.3	8.6	81.37	-
Swin-T	LRA	-	21.1 (-25.4%)	6.7	77.30	-4.07
SWIII-1	RB-LRA	-	21.1 (-25.4%)	6.7	80.27	-1.1
	RB-LRA + KD	Feature	21.1 (-25.4%)	6.7	80.49	-0.88
	Baseline	-	88.1	30.3	83.47	-
	LRA	-	60.1 (-31.8%)	21.1	81.75	-1.72
Swin-B	AAFM+GFM (Yu & Wu, 2023)	Feature	60.2 (-31.7%)	-	82.99	-0.48
SWIII-B	PELA (Guo et al., 2024)	Feature	62.2 (-29.4%)	21.3	82.50	-0.97
	RB-LRA		60.1 (-31.8%)	21.1	82.88	-0.59
	RB-LRA+KD	Feature	60.1 (-31.8%)	21.1	83.44	-0.03

Backbone	Params(M)	GFLOPs	AP^{box}	AP^{mask}
ResNet-50 (He et al., 2016)	44.4	250.2	40.0	36.1
PVT-M (Wang et al., 2021)	63.9	351.2	42.0	39.0
Swin-T (Liu et al., 2021)	47.8	256.8	42.7	39.3
Swin-T + RB-LRA	40.6	241.2	42.5	39.0

Model	Method	Params(M)	AP	AR
V:TDoor D	Baseline	89.9	75.9	81.0
ViTPose-B	RB-LRA	66.8 (-25.7%)	75.0	80.4

Experimental Results-2 (RB-LRA + WADS)

Evaluation WADS : ImageNet

- Baseline : RB-LRA
- Achieving the highest accuracy
- Demonstrating excellent compatibility with proposed RB-LRA
- Superiority of the Unified Framework : Model Size Reduction: Up to 87.2%

Inference Latency on Real Devices

- Android : Cortex-X3
- Edge : NVIDIA Jetson AGX Xavier
- RB-LRA: Up to 2.1x Acceleration
- RB-LRA + WADS: Up to 3.2x Acceleration
- Demonstrating On-Device Acceleration of the Proposed RB-LRA + WADS Framework

Model	Method	Prec.	Size(MB)	ACC.(%)	Diff.(%)
DeiT-T	Baseline(RB-LRA)	FP32	20.8	71.70	-
	NaivePTQ			70.90	-0.80
	SmoothQuant (Xiao et al., 2023)		5.2	71.43	-0.27
	Repq-ViT (Li et al., 2023)	INT8		71.38	-0.32
	QADS (Kim et al., 2024)			71.40	-0.30
	WADS			71.52	-0.18
	Baseline(RB-LRA)	FP32	177.6	81.12	-
	NaivePTQ		44.4	79.62	-1.50
DeiT-B	SmoothQuant (Xiao et al., 2023)			80.26	-0.86
Dell-D	Repq-ViT (Li et al., 2023)	INT8		80.37	-0.75
	QADS (Kim et al., 2024)			79.82	-1.30
	WADS			80.56	-0.56
	Baseline(RB-LRA)	FP32	84.4	80.49	-
	NaivePTQ		21.1	78.30	-2.19
Swin-T	SmoothQuant (Xiao et al., 2023)			80.00	-0.49
SWIII-1	Repq-ViT (Li et al., 2023)	INT8		80.08	-0.41
	QADS (Kim et al., 2024)			80.04	-0.45
	WADS			80.20	-0.29
	Baseline(RB-LRA)	FP32	240.4	83.44	-
	NaivePTQ		60.1	82.14	-1.30
Swin-B	SmoothQuant (Xiao et al., 2023)	INT8		82.76	-0.68
	QADS (Kim et al., 2024)	11/1/0		82.37	-1.07
	WADS			82.97	-0.47

Model	Method	Prec.	Size(MB)	Android(ms)	Xavier(ms)
	Baseline	FP32	346.4	275.6	150.7
DeiT-B	RB-LRA	FP32	177.6	153.2	73.6
	RB-LRA + WADS	INT8	44.4	86.7	59.4
Swin-T	Baseline	FP32	113.2	98.5	61.1
	RB-LRA	FP32	84.4	83.6	38.6
	RB-LRA + WADS	INT8	21.1	67.3	27.4
	Baseline	FP32	352.4	287.4	140.5
Swin-B	RB-LRA	FP32	240.4	226.3	102.2
	RB-LRA + WADS	INT8	60.1	155.3	96.2

Experimental Results-2 (RB-LRA + WADS)

Evaluation WADS : ImageNet

Baseline : RB-LRA

- Achieving the highest accuracy
- Demonstrating excellent compatibility with proposed RB-LRA
- Superiority of the Unified Framework : Model Size Reduction: Up to 87.2%

Inference Latency on Real Devices

Android : Cortex-X3

Edge : NVIDIA Jetson AGX Xavier

RB-LRA: Up to 2.1x Acceleration

RB-LRA + WADS: Up to 3.2x Acceleration

 Demonstrating On-Device Acceleration of the Proposed RB-LRA + WADS Framework

Model	Method	Prec.	Size(MB)	ACC.(%)	Diff.(%)
	Baseline(RB-LRA)	FP32	20.8	71.70	-
	NaivePTQ			70.90	-0.80
DeiT-T	SmoothQuant (Xiao et al., 2023)		5.2	71.43	-0.27
Dell-1	Repq-ViT (Li et al., 2023)	INT8		71.38	-0.32
	QADS (Kim et al., 2024)			71.40	-0.30
	WADS			71.52	-0.18
	Baseline(RB-LRA)	FP32	177.6	81.12	-
	NaivePTQ		44.4	79.62	-1.50
DeiT-B	SmoothQuant (Xiao et al., 2023)			80.26	-0.86
Del I-D	Repq-ViT (Li et al., 2023)	INT8		80.37	-0.75
	QADS (Kim et al., 2024)			79.82	-1.30
	WADS			80.56	-0.56
	Baseline(RB-LRA)	FP32	84.4	80.49	-
	NaivePTQ		21.1	78.30	-2.19
Swin-T	SmoothQuant (Xiao et al., 2023)			80.00	-0.49
Swiii-1	Repq-ViT (Li et al., 2023)	INT8		80.08	-0.41
	QADS (Kim et al., 2024)			80.04	-0.45
	WADS			80.20	-0.29
	Baseline(RB-LRA)	FP32	240.4	83.44	-
	NaivePTQ		60.1	82.14	-1.30
Swin-B	SmoothQuant (Xiao et al., 2023)	INT8		82.76	-0.68
	QADS (Kim et al., 2024)	11110		82.37	-1.07
	WADS			82.97	-0.47

Model	Method	Prec.	Size(MB)	Android(ms)	Xavier(ms)
	Baseline	FP32	346.4	275.6	150.7
DeiT-B	RB-LRA	FP32	177.6	153.2	73.6
	RB-LRA + WADS	INT8	44.4	86.7	59.4
	Baseline	FP32	113.2	98.5	61.1
Swin-T	RB-LRA	FP32	84.4	83.6	38.6
	RB-LRA + WADS	INT8	21.1	67.3	27.4
	Baseline	FP32	352.4	287.4	140.5
Swin-B	RB-LRA	FP32	240.4	226.3	102.2
	RB-LRA + WADS	INT8	60.1	155.3	96.2

Experimental Results-2 (RB-LRA + WADS)

Evaluation WADS : ImageNet

- Baseline : RB-LRA
- Achieving the highest accuracy
- Demonstrating excellent compatibility with proposed RB-LRA
- Superiority of the Unified Framework : Model Size Reduction: Up to 87.2%
- Inference Latency on Real Devices
 - Android : Cortex-X3
 - Edge : NVIDIA Jetson AGX Xavier
 - RB-LRA: Up to 2.1x Acceleration
 - RB-LRA + WADS: Up to 3.2x Acceleration
 - Demonstrating On-Device Acceleration of the Proposed RB-LRA + WADS Framework

Model	Method	Prec.	Size(MB)	ACC.(%)	Diff.(%)
	Baseline(RB-LRA)	FP32	20.8	71.70	-
	NaivePTQ			70.90	-0.80
DeiT-T	SmoothQuant (Xiao et al., 2023)		5.2	71.43	-0.27
Dell-1	Repq-ViT (Li et al., 2023)	INT8		71.38	-0.32
	QADS (Kim et al., 2024)			71.40	-0.30
	WADS			71.52	-0.18
	Baseline(RB-LRA)	FP32	177.6	81.12	-
	NaivePTQ		44.4	79.62	-1.50
DeiT-B	SmoothQuant (Xiao et al., 2023)			80.26	-0.86
Бен-Б	Repq-ViT (Li et al., 2023)	INT8		80.37	-0.75
	QADS (Kim et al., 2024)			79.82	-1.30
	WADS			80.56	-0.56
	Baseline(RB-LRA)	FP32	84.4	80.49	-
	NaivePTQ		21.1	78.30	-2.19
Swin-T	SmoothQuant (Xiao et al., 2023)			80.00	-0.49
SWIII-1	Repq-ViT (Li et al., 2023)	INT8		80.08	-0.41
	QADS (Kim et al., 2024)			80.04	-0.45
	WADS			80.20	-0.29
	Baseline(RB-LRA)	FP32	240.4	83.44	-
	NaivePTQ			82.14	-1.30
Swin-B	SmoothQuant (Xiao et al., 2023)	INT8	60.1	82.76	-0.68
	QADS (Kim et al., 2024)	11110	00.1	82.37	-1.07
	WADS			82.97	-0.47

Model	Method	Prec.	Size(MB)	Android(ms)	Xavier(ms)
	Baseline	FP32	346.4	275.6	150.7
DeiT-B	RB-LRA	FP32	177.6	153.2	73.6
	RB-LRA + WADS	INT8	44.4	86.7	59.4
	Baseline	FP32	113.2	98.5	61.1
Swin-T	RB-LRA	FP32	84.4	83.6	38.6
	RB-LRA + WADS	INT8	21.1	67.3	27.4
	Baseline	FP32	352.4	287.4	140.5
Swin-B	RB-LRA	FP32	240.4	226.3	102.2
	RB-LRA + WADS	INT8	60.1	155.3	96.2

Thank you!