ProofAug: Efficient Neural Theorem Proving via
Fine-grained Proof Structure Analysis

Haoxiong Liu' Jiacheng Sun® Zhenguo Li’> Andrew C Yao !’

Th - Proof method
> Conjectured -4 | roof metho

Conjecture 0-0 |
i - | Conjecture

———————— % Step into/out a block
Conjecture 1
——— P Go to next proof step

Conjecture 0-0

[Conjecture 1]1’ Conjecture 1 |<

Conjecture 1-0

Conjecture 1-0

Conjecture 1-0

Red: Failed
Green: Passed
Orange: Postponed

Conjecture 1-1

Conjecture 2 |" Conjecture 2 l" Conjecture 2

: (2)) (b) R (©
a C

<ATP proof> <ATP proof>

Theorem Theorem
Statement Statement

Conjecture 0-0

—’| Conjecture 0 }—~

<ATP proof>

Conjecture 0-0

Conjecture 1-0

ERP: Send

I
I
1
—> E— > compitor
I
1
1
1

request to the
LM to prove
\ Conjecture 1

o

©

QE.D. Q.E.D.

()

Al achieves silver-medal standard

Formal theorem proving solving [ternationa) etnematical

25 JULY 2024

AlphaProof and AlphaGeometry teams

Let Q be the set of rational numbers. A function f : Q — Q is called \emph{aquaesulian} if the following property FO rma | |Zed

theorem imo_2024 p6
holds: for every z,y € Q, - -

to Lean 4 (IsAquaesulian : (2 » Q) = Prop)

fle+fy)=f@)+y o f(f(@)+y) =2+ f(y). (IsAquaesulian_def : V f, IsAquaesulian f &
Show that there exists an integer ¢ such that for any aquaesulian function f there are at most ¢ different rational vV x ¥, f (X + f Y) =f x+ y v f (-F X + Y) =x+ f Y)
numbers of the form f(r) + f(—r) for some rational number 7, and find the smallest possible value of c. IsLeast {(c : Z) | ¥V f, IsAquaesulian f » {(fr + f (-r)) | (r : Q)}.Finite A
Solution: c22 {(fr+Ff (-r)) | (r: Q@)}.ncard £ c} 2 := by

theorem imo_2024_p6
(IsAquaesulian : (O » Q) - Prop)
(IsAquaesulian_def : V f, IsAquaesulian f e
Vxy, fx+fy)=Ffx+yvFf(fx+y)=x+Ffy):
IsLeast {(c : Z) | V f, IsAquaesulian f » {(f r + f (-r)) | (r : Q)}.Finite A
{(fr+f (-r)) | (r: Q)}.ncard < c} 2 := by
exists@?_
- uselu b=>if j:u @=0then by_contra Ac=>?_ else ?_
- suffices:({J]|3k,u k+u (-k)= 3}) <{0}
- simp_all[this.antisymm]

rintro - (a, rfl)

contrapose! ¢

simp_all

suffices:{U|Jexamples6, (u) <O +u (-<_>)= U} ={0,(u (a : Rat)+ (u<|@@"((

(-a))))) ¥ .-
- use (Set.toFinite (_)).subset T@@this , (Set.ncard_le_ncard$ (((this)))).

trans (Set.ncard_pair$ Ne.symm (t ((c)))).le
rintro-(hz, rfl)

induction b @hz a

- have:=b (-a)$ hz+u a

Proof search with i L .
orover and compiler w10 i i, Verified in Lean compiler

- simp_all
have:=b hz (hz+(u a+u (-a)))
have:=b (hz+(u atu (-a)))$ hz+(u a+u (-a))
use .inr$ by_contra$ by hint
have:=b hz$ hz+(u hz+u (-hz))
cases b (hz+(u hz+u (-hz)))$ hz+(u hz+u (-hz))with|_=>hint
have:=b (-hz) (u hz+a)

The best practice is still unclear peciniize this (u hzva)

simp_all[<add_assoc]

Procedural (tactic-style

Natural Two nc_m-zpro real pumbers, a a;ld b,b satisfy ab = a — b;lWhickll of thf
Language following is a possible value of £ + = —ab? (A)-2(B) 5~ (C) 5 (D) 5
(E)2
${
amc12-2000-pl11.0 $e |- (ph -> A e RR) S
amcl2-2000-pll.1 Se |- (ph -> B e. RR) S.
amcl2-2000-pll.2 $e |- (ph -> A =/= 0) §.
amcl2-2000-pll.3 $e |- (ph -> B =/= 0) $.
amcl2-2000-pll.4 %e |- (ph —> (A x. B) =
Metamath (A-B)) S.
amcl2-2000-pll $p |- (ph -> (((A / B) +
(B/A))-(RARx. B))=2)
$=
(cdiv co caddec cmul cmin c2 cexp eqcomd ... §.
S}
theorem amcl2_2000.pll
(a b R)
Lean (hg : a# 0ADb#0)
(hy a b =a-bh)
a/b+b/a-ax*b=2:=
begin
field_simp [hg.l, hy.27,
simp only [h;, mul_comm, mul_sub],
ring,
end
theorem amcl2_2000.pl1:
fixes a b::real
Isabelle assumes "a \<nocteg> 0" "b \<noteg> 0"
and "a x b = a - b"
shows "a / b+ b /a-axb=2"
using assms
by (smt (verit, ccfv_threshold)
diff divide distrib
div_self divide.divide_times._eq
egdivide_imp nonzeromult div_cancel_left)
end

Procedural proofs (Adapted from Polu et al. 2020)

vsS. Declarative

lemma prime mod 4 cases:
fixes p :: nat
assumes "prime p"
shows "p=2V [p=1] (mod 4) vV [p = 3] (mod 4)"
proof (cases "p = 2")
case False
with prime gt 1 nat[of p] assms have "p > 2" by auto
have "—4 dvd p"
using assms product dvd irreducibleD[of p 2 2]
by (auto simp: prime_elem iff irreducible simp flip: prime_elem nat iff)
hence "p mod 4 # 0"
by (auto simp: mod eq 0 iff dvd)
moreover have "p mod 4 # 2"
proof
assume "p mod 4 = 2"
hence "p mod 4 mod 2 = 0"
by (simp add: cong_def)
thus False using <prime p> <p > 2> prime odd nat[of p]
by (auto simp: mod_mod_cancel)

qed
moreover have "p mod 4 € {0,1,2,3}"
by auto
ultimately show ?thesis by (auto simp: cong_def)
ged auto
VS. A typical Isabelle/Isar proof adapted from AoFP

theorem aime_1983 p2 (x p : E) (f : E =)

(ho : @< pAp<15) (hys : p £ X A X £ 15)
(hy : £ x = abs (x-p) + abs (x-15) + abs (x-p-15)) :
15 ¢ f x := by

have h3 : abs (x - p) = x - p := by
rw [abs_of_nonneg]
linarith

have h4 : abs (x - 15) = 15 - x := by
rw [abs_of_nonpos]
linarith
all_goals linarith

have h5 : abs (x - p - 15) = p + 15 - x := by
rw [abs_of_nonpos]
linarith
all_goals linarith

rw [ha, h3, h4, h5]

linarith

A Lean 4 proof by Kimina-Prover-Preview-Distill-7B

Proof-step generation methods

Proof Search Tree

root

tactic tactic tactic
logprob=-0.7 logprob=-0.9 logprob=-4.5
[1=~ stgaa 7
goal goal
i i*1
’_1 |
[1
tactic tactic tactic
logprob=-0.9 logprob=-1.3 logprob=-2.2
goal goal goal
j k k+1
Cumulative Logprob Queue
goal goal goal - goal
reot i i+1 j Kk
0o 09 0.9 2.2 3.1

goal
k+1

-3.1

Figure 1: Proof search consists in maintaining a proof tree where multiple tactics are explored for
each goal, starting from the root goal. Goals are expanded by cumulative (tactic) logprob priority.

GPT-f (Polu et al. 2020)

Selection

Nig,tol=1)
Wig,tp)=0.3/
¥ (gg, tg) =0
Wigg, tg)=0

o@ o] e o

Expansion

) r’\,,_L i S
o @ ||

theorem amcl2_2000_pll

(ab: R)

Lean (hn: a;éOf\b#Cl]
(hy : a » b=a-"b) :
a/b+b/a-a=~hb=2:=
begin

field.simp [hg.1, hg.2],
simp only [h;, mul_comm, mul_sub],
ring,

Back-propagation

welg)l={1=0.1)=0_4&

Hig,t1)=2
Wig,t1)=0_.5+(1xl_1)u0_4
--r[gn]=1u:.1|® @I rig)=0.4
Y F
Higo, ta) =1 Nigy, tol=1

Wigg, tg)=1x0.1

A J
vrigz) =1 o
";(g33=:_1|@' @I 7 (gy)=0.4

Wigy, tel=0.4

i S
e e L]

Figure 5: HyperTree Proof Search. We aim at finding a proof of the root theorem g with HTPS. Proving
either {gs}, {90, 91}, or {gs, g7} would lead to a proof of g by tactic ty, t1, or t2. The figure represents the
three steps of HTPS that are repeated until a proof is found. Guided by the search policy, we select a hypertree
whose leaves are unexpanded nodes. The selected nodes are then expanded, adding new tactics and nodes to the
hypergraph. Finally, during back-propagation we evaluate the node values of the hypertree, starting from the
leaves back to the root, and update the visit counts and total action values.

Recent work: InternLM2.5-StepProver, Hunyuan-Prover, BFS-Prover, -

Pitfall: Heavy communication between the prover and the verification environment.
InternLM2.5-StepProver search budget: 256 (#passes) x 32 (#expansion width) x 600 (#¥max expansions per pass)

HTPS (Lample et al. 2022)

Whole-proof generation

* |sabelle/Isar: declarative style proof

proof (rule ccontr) \/el’lfled by
theorem mathd algebra 405: assume "- (x =1V x = 2)"
fixes X :: nat 0 0 00 then_have "x > 3" using h0 by auto
assumes hO : "0 < x" ‘ then| have "x"2 + 4*x + 4 > 372 + 4*3 + 4" |
and h1 @ "X ~ 2 + 4 * x + 4 < 20" by (metis add le cancel right add le mono

nat mult le cancel disj power2 nat le eq le)
then show False using hl by auto

shows "x =1 V x = 2"

ged
* Humans/LLMs are better at writing conjectures than proof methods
° | | : conjecture, | | . proof method

* Draft, Sketch, and Prove (Jiang et al. 2023) = e T [|

We know that ged(a, b) - Iem(a, b) = ab, NSINg anoms usiogNassms

Fged(n, 9 =Tand 1o g tn g | e S e i
+ o4 = 1% " then have c2: “n

* LLMs compose intermediate conjectures b SR TR

* Using few-shot examples of proof sketches

+ Off-the-shelf ATPs fill the gaps 5@ &

Draft informal proof Generate formal sketch Prove remaining gaps

Pitfalls of DSP prompting style

* (Hard Conjectures): the conjectures could be too hard for ATPs to solve.

theorem numbertheory sqmod3inQ1ld:
fixes a :: int
shows "@*2 mod 3 = 0 V a”2 mod 3 = 1"
proof - Sledgehammering. ..

(* Let a be an integer, then $a \pmod 3 \in {0, 1, 2}$. *) No proof found
have c0: "a mod 3 € {0,1,2}" by fastforce

(* Using that $a”2 \pmod 3 = (a \pmod 3)"2 \pmod 3$ *)
have "a”2 mod 3 = (a mod 3)72 mod 3" by (simp add: power mod)

then show ?thesis using c0 sledgehammerjp—
qed

* (Complicated Draft): the autoformalization process is not robust, and there Is
a mismatch betweeen informal and formal proof.

theorem

"gcd 180 168 = (12::nat)" theorem
proof - "gcd 180 168 = (12::nat)"
(* If a number divides into both $180% and 168% *) x by eval

have "gcd 180 168 dvd 180" by eval

moreover have "gcd 180 168 dvd 168" by eval

(* 1t must also divide into their difference. *) . .
finally have "gcd 180 168 dvd 12" sorry A Seemlngly honest translation

ged can be a disaster!

Our solution to Solve Pitfalls of DSP

* Pitfalls of DSP prompting style
* (Hard Conjectures): the conjectures could be too hard for ATPs to solve.

* (Complicated Draft): the autoformalization process is not robust, and there is a
mismatch betweeen informal and formal proof.

* Our Solution
1. Let the model generate the whole proof rather than a proof sketch
* DSP prompting suppresses the low-level details in the proof sketch
2. We find compatible semi-proofs from the ‘proof proposal’ generated by the model
* Semi-proofs: valid proofs that can contain ‘sorry’s, which indicate skip of the local proof
* Compatible: every ‘sorry’ corresponds to some tactics in the original proof proposal

3. Use ATPs to fill in the gaps in the semi-proofs
* ATP = sledgehammer / heuristic methods as in DSP

llustration of Our Solution

(o~ Coiecro - (o)~ _Coiecro - (e}~ G J- | | Proof method

[] Conjecture

———————— > i
[Conjecture 1 }1’ _ Step into/out a block

—— P Go to next proof step

Conjecture 1-0

Conjecture 1-1

Red: Failed
Green: Passed
Orange: Postponed

Conjecture 2 Conjecture 2

-i -ﬁ
(e ()

————

—y Cw .y [avpoer

1
) ERP: Send
completion

!
1
!
I request to the
i
1

LM to prove
\ Conjecture 1
/

S e

(@) (© ® (®

Solution Part 1: Find the MCSP

theorem algebra sgineq at?maltl init proof:
fixes a::real
shows "a + (2 — a) \<le> 1"
proof —
have "(a - 1)\<"sup>2 \<ge> 0" for a::real
proof —
have "0 \<le> (@ - 1) » (a— 1)"
using zero le square by auto
then show "(a — 1) \<"sup>2 \<ge> 0"
by (simp add: power2_eq square)

qed

then have "a + (2 — a) \<le> 1" for a::real

proof —
have "a » (2 - a) =2 » a - a\<"sup>2" by (simp add: power2 eq sguare)
also have "... = (a - 1)\<"sup>2 + 1 - a\<"sup>2" by (simp add: algebra simps)
also have "... \<le> 1"

using \<open>0 \<le> (a - 1)\<"sup>2\<close> by linarith
finally show ?thesis .
ged

then show ?thesis .

ged

|
Z

-b[Conjecture 0 |-‘

Conjecture 1

theorem algebra sgineq at2maltl MCSP:
fixes a::real
shows "a x (2 — a) \<le> 1"
proof —
have "(a — 1)\<"sup>2 \<ge> 0" for a::real
proof —
have "0 \<le> (a - 1) » (a—-1)"
using zero_le_square by auto
then show "(a — 1) \<"sup>2 \<ge> 0"
by (simp add: powerZ_eq square)

ged

then have "a » (2 — a) \<le> 1" for a::real

proof -
have "a * (2 — a) = 2 » a — a\<"sup>2" sorry
alsohave "... = (a - 1) \<"sup>2 + 1 - a\<"sup>2" sorry
also have "... \<le> 1"

using \<open>0 \<le> (a — 1)\<"sup>2\<close> sorry
finally show ?thesis .
ged

then show ?thesis .

qed

Conjecture 1-0

Conjecture 2]c'

(a)

Conjecture 2 |"

Algorithm 1 Find the Maximal Compatible Semi-Proof

Input: initial proof y?, ITP (A, S,T, F)
a Parse(y?c)
s < [Null] x len(a)
iy Sthis < 1, So
while i < len(a) do
S[i] = Stnis
Snext T(Sthisaa[i])
if s,,0.¢.€rror then
if s¢5,:s.mode = proof(prove) then
ali] < sorry
else > Error in other modes, skip the block
block < InnermostBlock(i, a)
if block is Null then
return Null > a[i] not in any block, terminate
end if
alblock.start..block.end — 1] <= Null
a[block.end] + sorry
i, Stnis < block.end, s[block.start]
end if
else
i: Sthis € i+ 11 Snext
end if
end while
if S¢pis. finish then
return Concat(a)
end if

> States before each step

SO | utl O n Pa rt 2 P rO Of Au g m e ntatl O n Algorithm 2 Proof Augmentation (ProofAug)

Theorem
Statement

QE.D.

Input: theorem statement x ¢, informal statement & prob-
lem z;||y;, prompter p(-,-), LM 7(+|-), ITP (A, S, T)
Sample y§ ~ 7(-|p(xillyi, z¢))
a<« Parse(FindMCSP(y?)) > Apply Algorithm 1
s < [Null] x len(a)
1, Sthis < 1, 80

[while i < len(a) do

Snext < T(Sthisa a[%])

if a[i] # sorry then

error < False

else
[<ATP root] error < T(S¢his, KATP>).error > Try ATPs
> end if
if error then > Resort to the last level

block <+ InnermostBlock(i, a)
if block is Null then return Null
a[block.start..block.end — 1] <— Null
a[block.end] < sorry
(2 iy Sthis < block.end, s[block.start]

else

?:: Sthis < t+ 1: Snext

end if
end while
return Concat(a) > The final proof

Q.E.D.

Solution Part 3: Efficient Recursive Proving

(Optional)

theorem(in group) int_pow_pow:
assumes 'x € carrier G"
shows "(x [*] (n :: int)) [*] (m ::

int) = x [*]) (n *m :: int)"
goal (1 subgoal): 1. (x [*] n) [*]
proof (cases)
goal (2 subgoals): 1. 2 — (x... 2..
assume n_ge: "n > Q" thus ?thesis
using this: @ < n goal (1 subgoal)
proof (cases)
>»> goal (2 subgoals)

1.0<n i
2 Q" thus ?thesis

assume m.ge: ''m

1sing th: @ < m goal (1 subgoal).

using n_gé nat_pow_pow in
t_pow_def2
ccessful solve goal (m > Q) ...

No subgoals!

1
|
|
|
|
|
!
|
|
|
|
|
|
|
|
!
|
|
|
|
!
|
|
|
|
|
|
!
|
|
|
|
|
Complete proof il
|

(a) Step-by-step Proof

Proof Level 1 Proof Level 2
assume n_ge: "n 2 @" thus ?thesis
proof (cases)
assume m_ge: "m 2 @" thus

2thesis SOEEym = m = = = = = = = -

theorem(in group) int_pow_pow:

assumes "x e carrier G"

shows "(x [*] (n :: int)) [*] (m

I
1
1
1
i A o o | next
ek = *mo:: 1
int) 1)L([] f‘n . m . 1nt)) I assume m_1t: "= m 2 Q"
proof ?-éaéegjl‘ﬁ‘d S K with n_ge show ?thesis SOITy -+
goal (2 suwbgoals): 1. P ... 2. = P... : ged
assume n_ge: "n 2 Q" 1
|

assume n_1t: "= nz Q"
thus ?thesis
proof (cases)
assume m_ge: "m 2 Q"
have "inv x [*] (nat m * nat

thus ?thesis sorry------
Successful salve goal: (0 <n) ...
next
goal (1 subgoal): 1. -

assume n_lt: "= n 2 Q" [EETXOR

Proof Level 3
assune m_ge: "m 2 @"
e thus ?thesis
: using n_ge nat_pow_pow
| int_pow_def2
assume m_1t: "-m 2> @"
with n_ge <how ?thesis
apply (simp add: in-
t_pow_def2)
by (metis assms mult_mi-
nus_right n_ge
nat_pow_pow)

e

have "inv x [*] (nat m *
»~nat (- n)) = inv x [*] nat

Successful solve goal: (-0 = n)... (_ n)) = inv x [A] nat (_ (ITI * : (_ (m * n))“
99 o subgoats! n))" ISOELy\e = = == = == mm mm === 1 by (metis (full_types)
o e Tenrre . .
show ?thesis ISOITy == = - - - - 5 m_ge mult_ninus_right)
Proof Target (theorem/middle conjecture) .es !
> proof . . . EESEEEA ———> ses

(b) Recursive Proof

POETRY (Wang et al. 2024)

! ERP:Send
| completion
! request to the
L LM to prove
\ Conjecture 1 ;

Efficient Recursive Proving (ERP) Module

Algorithm 2 Proof Augmentation (ProofAug)

Input: theorem statement x 7, informal statement & prob-
lem x;||y;, prompter p(-, -), LM «(:|-), ITP (A, S, T)
Sample y3 ~ (- |p(xilly:, 5))
a+— Parse(FindMCSP(y?))
s < [Null] x len(a)
1, Sthis < 1, S0
while i < len(a) do

Snext T(Sthisa a[?'])

if a[i] # sorry then

error < False

> Apply Algorithm 1

else

error < T(S¢his, <ATP>).error > Try ATPs
end if
if error and use E R P then > ERP module

y? — a[l..i — 1]||sp;s-state
Yy~ W('|P($i||yi:93f||y§))
if T(Sthis: y?) = Snext then
ali], error < y§, False
else
y§ < FailedTactics2ATP(y)
if T(Sth,z's: y?) = Snext then
ali], error < y§, False
end if
end if
end if

if error then > Resort to the last level
block + InnermostBlock(, a)
if block is Null then return Null
alblock.start..block.end — 1] < Null
alblock.end] « sorry
i, Sthis < block.end, s[block.start]

else
?:: Sthis 1+ 1: Snext

end if

end while

return Concat(a) > The final proof

Results

Table 2: Comparison of methods using Isabelle as the proof assistant on MiniF2F-test. For BFS methods, the sample
budget N x S x T corresponds to N attempts of S expansion with 7" iterations. As to tree-search methods, it becomes
N x T, with the same meanings for the symbols. A T indicates this result is obtained by using a mixed strategy.

Method Model Sample Budget miniF2F-test
Methods using Isabelle
DSP (Jiang et al., 2023) CodeX 100 39.3%
Subgoal-XL(Zhao et al., 2024) Fine-tuned Llama-8B 64 39.3% 120 4
163841 56.1%
LEGO-Prover(Wang et al., 2023) mixed GPTs 100 50.0%
Lyra(Zheng et al., 2024) GPT-4 100 47.1% 100 A
200 51.2% =
POETRY (Wang et al., 2024) Fine-tuned ProofGPT (1.3B) 1 %32 x 128 42.2% £
2 80
Our Experiments (using Isabelle) s
DSP baseline deepseek-math-7b-base 1 28.7% %
10 40.6% & 607 —— Our prompt + ProofAug
100 49.2% our prompt
ProofAug deepseek-math-7b-base 1 36.5%(+7.8%) 20 —— DSP prompt + ProofAug
10 44.7%(+4.1%) —— DSP prompt
100 52.5%(+3.3%) ~— 0-shot + ProofAug
ProofAug(0-shot) deepseek-math-7b-base 500 54.5% 20 4 — Oshot
ProofAug(0-shot) + ERP deepseek-math-7b-base 500 56.1% 0 20 20 60 80 100
Cumulative deepseek-math-7b-base 14007 61.9% Number of Attemps
Cumulative + Dataset Curation deepseek-math-7b-base 21007 66.0%
Methods using Lean
HTPS(Lample et al., 2022) Evariste (600M) 64 x 5000 41.0%
RMaxTS(Xin et al., 2024b) DeepSeek-Prover-V1.5-RL (7B) 32 x 64007 63.5%
BFS + CG(Wu et al., 2024) InternLM2.5-StepProver (7B) 256 x 32 x 600 65.9%

Curation of miniF2F(Isabelle

* Typos :

13
14

w

* Minus for Nat.

1e
11

12

13

theory mathd_numbertheory 764

@@ -8,7 +9,7 @@ theory mathd_numbertheory 764

begin

definition inv_mod: :"nat \<Rightarrow> nat \

<Rightarrow> nat" where

"inv_mod d p = (SOME x. [x*p = 1] (mod p))"

theorem mathd_numbertheory_764:

fixes p :: nat

@ -7,8 +7,9 @@ theory mathd_algebra_392

begin

theorem mathd_algebra 392:

- fixes n :: nat

= assumes "even n"

and "(n - 2)%2 + n*2 + (n + 2)72
(12296::int)"
shows "((n - 2) *n ¥ (n +2)) / 8
= (32736::int)"

S EENEN isabelle/test/mathd_algebra_392.thy |'_|,:|

10
11
12
13

14

15

6 theory mathd_numbertheory 764
9 begin
1@
11 definition inv_mod::"nat \<Rightarrow> nat \

<Rightarrow> nat" where

12 + “inv_mod d p = (SOME x. [d*x
13
14 theorem mathd_numbertheory_764:
15 fixes p :: nat

begin

theorem mathd_algebra_392:
fixes n :: int
assumes "n > 0"
and "even n"
and "(n - 2)%2 + n*2 + (n + 2)72
= (12296::int)"
shows "((n - 2) *n ¥ (n+2)) / 8
= (32736::int)"

* ~15 corrected compared with the DSP version, 4 in the

1] (mod p))"

PR to upstream

Lean 4 Implementation

* Lean 4 proofs are naturally less declarative compared to Isabelle =0
* Nevertheless, Kimina-Prover-Preview takes a rather declarative way T s
* We build a pre-parser inferring the block structures by indents pllel S

linarith

linarith

* No default hammer tools come with Lean 4
* We choose Aesop, Omega, and a combination of some useful tactics for illustration

* Result

* Pass@1 acc for Kimina-Prover-Preview-Distill-1.5B: 44.3% -> 50.4%
* We are doing more extensive results

X = by

Takeaways

* Let the LLM generate the full proof, instead of a sketch first
* This aligns with the pre-training data
* ProofAug helps correct the mistakes in details!

* If ATPs cannot help find a proof from semi-proofs found by ProofAug -
* Use the recursive proving module

Thank you!

	幻灯片编号 1
	Formal theorem proving
	Procedural (tactic-style) vs. Declarative
	Proof-step generation methods
	Whole-proof generation
	Pitfalls of DSP prompting style
	Our solution to Solve Pitfalls of DSP
	Illustration of Our Solution
	Solution Part 1: Find the MCSP
	Solution Part 2: Proof Augmentation
	Solution Part 3: Efficient Recursive Proving�(Optional)
	Results
	Curation of miniF2F(Isabelle)
	Lean 4 Implementation
	Takeaways
	Thank you!

