

Formal theorem proving
Formalized
to Lean 4

Proof search with
prover and compiler Verified in Lean compiler

…
…

The best practice is still unclear

Procedural (tactic-style) vs. Declarative

Procedural proofs (Adapted from Polu et al. 2020) A Lean 4 proof by Kimina-Prover-Preview-Distill-7B

A typical Isabelle/Isar proof adapted from AoFPVS.

Proof-step generation methods

GPT-f (Polu et al. 2020) HTPS (Lample et al. 2022)

Recent work: InternLM2.5-StepProver, Hunyuan-Prover, BFS-Prover, ……

Pitfall: Heavy communication between the prover and the verification environment.
InternLM2.5-StepProver search budget: 256 (#passes) x 32 (#expansion width) x 600 (#max expansions per pass)

Whole-proof generation

• Isabelle/Isar: declarative style proof

• Humans/LLMs are better at writing conjectures than proof methods
• : conjecture, : proof method

• Draft, Sketch, and Prove (Jiang et al. 2023)
• LLMs compose intermediate conjectures

• Using few-shot examples of proof sketches
• Off-the-shelf ATPs fill the gaps

Verified by

Pitfalls of DSP prompting style

• (Hard Conjectures): the conjectures could be too hard for ATPs to solve.

• (Complicated Draft): the autoformalization process is not robust, and there is
a mismatch betweeen informal and formal proof.

A seemingly honest translation
can be a disaster!

Easy to human ≠ Easy to ATPs

Our solution to Solve Pitfalls of DSP

• Pitfalls of DSP prompting style
• (Hard Conjectures): the conjectures could be too hard for ATPs to solve.
• (Complicated Draft): the autoformalization process is not robust, and there is a

mismatch betweeen informal and formal proof.

• Our Solution
1. Let the model generate the whole proof rather than a proof sketch

• DSP prompting suppresses the low-level details in the proof sketch
2. We find compatible semi-proofs from the ‘proof proposal’ generated by the model

• Semi-proofs: valid proofs that can contain ‘sorry’s, which indicate skip of the local proof
• Compatible: every ‘sorry’ corresponds to some tactics in the original proof proposal

3. Use ATPs to fill in the gaps in the semi-proofs
• ATP = sledgehammer / heuristic methods as in DSP

Illustration of Our Solution

Solution Part 1: Find the MCSP

Solution Part 2: Proof Augmentation

Solution Part 3: Efficient Recursive Proving
(Optional)

POETRY (Wang et al. 2024)

Efficient Recursive Proving (ERP) Module

Results

Curation of miniF2F(Isabelle)

• Typos

• Minus for Nat.

• ~15 corrected compared with the DSP version, 4 in the PR to upstream

Lean 4 Implementation

• Lean 4 proofs are naturally less declarative compared to Isabelle
• Nevertheless, Kimina-Prover-Preview takes a rather declarative way
• We build a pre-parser inferring the block structures by indents

• No default hammer tools come with Lean 4
• We choose Aesop, Omega, and a combination of some useful tactics for illustration

• Result
• Pass@1 acc for Kimina-Prover-Preview-Distill-1.5B: 44.3% -> 50.4%
• We are doing more extensive results

Takeaways

• Let the LLM generate the full proof, instead of a sketch first
• This aligns with the pre-training data
• ProofAug helps correct the mistakes in details!

• If ATPs cannot help find a proof from semi-proofs found by ProofAug …
• Use the recursive proving module

Thank you!

	幻灯片编号 1
	Formal theorem proving
	Procedural (tactic-style) vs. Declarative
	Proof-step generation methods
	Whole-proof generation
	Pitfalls of DSP prompting style
	Our solution to Solve Pitfalls of DSP
	Illustration of Our Solution
	Solution Part 1: Find the MCSP
	Solution Part 2: Proof Augmentation
	Solution Part 3: Efficient Recursive Proving�(Optional)
	Results
	Curation of miniF2F(Isabelle)
	Lean 4 Implementation
	Takeaways
	Thank you!

