KGMark: A Diffusion Watermark for Knowledge Graphs

Hongrui Peng, Haolang Lu, Yuanlong Yu, Weiye Fu, Kun Wang, Guoshun Nan

Beijing University of Posts and Telecommunications

Nanyang Technological University

ICML 2025

Problem: Securing Al-Generated Knowledge Graphs

Context:

- Knowledge Graphs (KGs) are crucial for many Al applications, including semantic search and recommendation systems.
- Al models can now generate high-quality synthetic KGs.

Challenges:

- **Integrity & Bias:** Synthetic KGs can embed biases or misleading information, and are vulnerable to malicious alterations.
- **Intellectual Property:** Presenting synthetic graphs as original work can violate IP rights, undermining trust.
- **Technical Gap:** Existing watermarking fails on dynamic graphs due to spatial and temporal variations.

Goal:

• To develop the first watermarking framework for KGs that generates **robust**, **detectable**, and **transparent** fingerprints.

Motivation and State-of-the-Art

Limitations of Prior Work:

- Conventional watermarking lacks robustness against the spatial-temporal variations of dynamic KGs.
- The heterogeneity of KGs requires embedding at the embedding level to balance fidelity and resilience.
- No existing method effectively handles unique graph attacks like isomorphism and structural perturbations.

Open Questions Addressed by this Paper:

- Can we design a robust watermark for KGEs against structural and temporal changes?
- Is it possible to embed a watermark with minimal impact on the KG's quality and downstream task performance?
- Can we create a secure and computationally feasible algorithm?

KGMark is the first framework to systematically solve these issues for KGs using a novel diffusion-based approach.

KGMark: The Three Pillars

KGMark is a comprehensive framework designed to satisfy the three essential properties of an effective watermark.

Transparency

- Minimal impact on the KG's usability.
- Preserves graph structure and semantics.

Detectability

- Accurate identification of the watermark's presence.
- High detection rates with confidence.

Robustness

- Resilience to attacks and modifications.
- Withstands post-editing and structural changes.

KGMark: The Three Pillars

Figure: KGMark ensures Transparency, Detectability, and Robustness.

Methodology: KGMark's Pipeline

The framework embeds and extracts the watermark by manipulating the latent space of a diffusion model.

Figure: From a target KG to a watermarked graph, and its verification after potential attacks

Methodology: KGMark's Pipeline

- **Pre-processing:** The KG undergoes community detection and graph alignment to normalize its structure.
- **2 Embedding:** The graph is encoded into a latent representation Z_0 . DDIM is used to get the initial noise vector Z_T .
- **Watermark Injection:** A signature S is embedded into the frequency domain of Z_T using a learnable mask M.
- **Decoding:** The watermarked noise vector Z_T^w undergoes reverse diffusion to generate the watermarked graph \mathcal{G}^w .
- **Extraction:** For a given graph, the process is inverted to extract a potential watermark, which is then verified statistically.

Methodology: Watermark Injection

The watermark is embedded in the frequency domain of the latent noise vector (Z_T) to ensure imperceptibility and robustness. This is achieved before the reverse diffusion process begins.

Figure: Visual overview of embedding the watermark in the frequency domain using a mask matrix.

8 / 28

Methodology: Watermark Injection

Injection Process:

- **1** The Fourier Transform (F) is applied to both the noise vector Z_T and the signature S.
- ② The frequency components are combined using the mask M:

$$\Delta = F(Z_T) \cdot (1 - M) + F(S) \cdot M$$

This replaces selected parts of the noise spectrum with the watermark's spectrum.

- **3** The Inverse Fourier Transform (F^{-1}) is applied to create the watermarked noise vector $Z_T^w = F^{-1}(\Delta)$.
- **4** This new vector Z_T^w is then fed into the DDIM's reverse process to generate the final watermarked graph.

Key Innovation I: Learnable Adaptive Watermark Mask (LAWMM)

Goal: Embed the watermark transparently with minimal disruption to the KG's utility.

Challenge:

 Watermark embedding inevitably introduces distortion. How can we control this distortion to preserve the graph's integrity?

Solution: LAWMM

- A learnable, adaptive mask matrix (LAWMM) is optimized for each graph's unique structure.
- This mask controls where and how the watermark is injected into the latent space.

Key Innovation I: Learnable Adaptive Watermark Mask (LAWMM)

Mechanism:

- The mask is trained by minimizing the discrepancy between the original and watermarked latent vectors, preserving the Latent Space Equilibrium.
- A "sample-then-embed" strategy with a correction term $\alpha \mathcal{S} \cdot \mathbb{M}$ (α is a tunable coefficient) is adopted, ensuring better alignment in the latent space.

$$\mathcal{L} = \sum_{j \in [1, \mathcal{T}]} \left\| \mathcal{Z}_{\mathcal{T} - k_j}^{\mathsf{INV}} - \left[f_w \left(f_{\mathsf{DDIM}}^{k_j} (\mathcal{Z}_{\mathcal{T}}^{\mathsf{INV}}, \mathcal{T}), \mathcal{S}, \mathbb{M} \right) + \alpha \mathcal{S} \cdot \mathbb{M} \right] \right\|^2.$$

• This balances imperceptibility and robustness by placing the watermark in less critical latent regions.

Key Innovation II: Defending Structural Variations

Goal: Ensure the watermark survives attacks unique to graph data.

Isomorphism Variations

- Graphs can have the same structure but different node orderings (isomorphism), which alters their matrix representation.
- Solution: Graph Alignment. KGMark normalizes graphs by reordering vertices based on degree and clustering coefficient, creating a canonical representation.

Structural Variations (Attacks)

- Attackers can add/remove edges or nodes to destroy the watermark.
- Solution: Redundant Hierarchical Embedding. KGMark partitions the graph into communities and embeds the watermark redundantly across them.
 - Global (Community Layer): Injects into a community's spectral profile.
 - 2 Local (Vertex Layer): Encodes via edge-weights around high-centrality nodes.

Key Innovation III: Likelihood-Based Verification

Goal: Reliably and accurately detect a watermark with statistical confidence.

Challenge:

 Random noise can sometimes resemble a watermark. We need a rigorous method to distinguish a true signal from chance.

Solution: A Hypothesis Test

- Watermark detection is formulated as a statistical hypothesis test:
- \mathcal{H}_0 (Null Hypothesis): The graph is clean; extracted noise is standard Gaussian $\mathcal{N}(\mathbf{0}, \sigma^2 \mathcal{I}_{\mathbb{C}})$.
- \mathcal{H}_1 (Alternative Hypothesis): The graph is watermarked; noise deviates from the standard.

Key Innovation III: Likelihood-Based Verification

Mechanism:

• To integrate the distance metric $d(\cdot,\cdot)$ and the signature extraction function f_{ex} , we define the residual vector $\mathcal R$ as the difference between the extracted signature and the optimal reference signature $\mathcal K^*\in\mathcal S$.

$$\mathcal{R} = \mathit{f}_{\mathsf{ex}}(\mathbb{M}, \mathcal{G}) - \mathcal{K}^*$$

ullet A test statistic, $\hat{\mathcal{T}}$, is computed from the extracted signature.

$$\hat{\mathcal{T}} = \frac{1}{\sigma^2} \sum_{i \in \mathbb{M}} |\mathcal{R}_i|^2$$

- Under \mathcal{H}_0 , this statistic follows a known **noncentral chi-squared** (χ^2) distribution.
- We calculate the p-value: $p = \Pr(\chi^2 \leq \hat{T} | \mathcal{H}_0)$.
- If p is below a significance level (e.g., 10^{-5}), we confirm the watermark's presence.

Experimental Setup: Datasets & Attacks

Datasets

- Three public KG datasets from diverse domains were used:
- Alibaba-iFashion (AliF): E-commerce
- MIND: News recommendation
- Last-FM: Music

Attacks Evaluated

- Robustness was evaluated against a wide range of post-editing attacks:
- **Structural:** Relation Alteration, Triple Deletion.
- Noise-based: Gaussian Noise Injection & Smoothing.
- Topological: Graph Isomorphism Variation (IsoVar).
- Adversarial: L2 Metric and NEA graph poisoning attacks.

Evaluation Metrics

- Detectability & Robustness: Area Under Curve (AUC).
- Transparency: Cosine Similarity, GMR, HMR, AMR, and Hits@10.

Experimental Setup: Details & Variants

Implementation Details

- The knowledge graph is first embedded using the **RotatE** model.
- The embedding dimension was set to 4096.
- All experiments were conducted on a single NVIDIA A800 GPU.

Ablation Variants

- W/O LAWMM: Uses a fixed watermark mask matrix instead of the learnable one to test the mask's effectiveness.
- Only CL: Applies the watermark exclusively in the Community Layer.
- Only VL: Applies the watermark exclusively in the Vertex Layer.

Baselines

- TreeRing & GaussianShading: Watermarking methods for diffusion models on images, adapted for graphs.
- **DwtDct & DetQim:** Classical watermarking techniques that modify transformed coefficients.

Experiment Result: Transparency

KGMark preserves the KG's structural integrity and utility for downstream tasks.

Table: Watermark Transparency Result on AliF

Datasets	Method	Cosine Similarity ↑			KG Quality Metric @ 75 Steps			
		50 Steps	65 Steps	75 Steps	GMR ↓	HMR ↓	AMR ↓	Hits@10 ↑
AliF	Original KG	-	-	-	1.828	1.162	135.459	0.8980
	W/O Watermark	0.7971	0.8797	0.9674	3.026	1.579	141.412	0.8318
	DwtDct	0.7215	0.7928	0.8251	5.096	1.699	157.036	0.6933
	DctQim	0.7509	0.7633	0.7653	5.104	1.654	161.142	0.7385
	TreeRing	0.7761	0.8431	0.9071	3.928	1.618	152.634	0.8017
	GaussianShading	0.2879	0.3226	0.3538	6.641	1.798	172.813	0.5137
	W/O LAWMM	0.7662	0.7838	0.8643	3.457	1.624	147.305	0.7871
	KGMark	0.7839	0.8309	0.9482	3.046	1.580	141.904	0.8296

Experiment Result: Transparency

Minimal Structural Distortion:

- KGMark achieves high Cosine Similarity scores (e.g., **0.9482** for AliF), indicating the watermarked KG is structurally close to the original.
- This is far better than baselines like GaussianShading (0.3538) and is comparable to a non-watermarked reconstruction (0.9674).

Preserved Downstream Performance:

- Performance on link prediction (Hits@10) is nearly on par with the original KG.
- On AliF, KGMark scores **0.8296** vs. the non-watermarked 0.8318, confirming the KG remains functional.

Experiment Result: Robustness - Structural Attacks

KGMark's hierarchical embedding provides strong resilience against attacks that alter graph structure.

Performance under Attack: (AUC scores on AliF dataset)

Table: Watermark Robustness vs. Structural and Adversarial Attacks

Method	Relation Alteration (50%)	Triple Deletion (50%)	Adversarial		
			L2 Metric	NEA	
DwtDct	0.8371	0.7724	0.9577	0.9638	
TreeRing	0.7392	0.8091	0.9621	0.9584	
Only CL (variant)	0.8864	0.8063	0.9426	0.9535	
Only VL (variant)	0.9433	0.8592	0.9521	0.9676	
KGMark (0.9207	0.9320	0.9841	0.9809	

Analysis:

- KGMark maintains a very high AUC (e.g., 0.9320) even when 50% of graph triples are deleted.
- It significantly outperforms ablated variants, showing that the combined coarse-grained (community) and fine-grained (vertex) embedding is essential.

Experiment Result: Robustness - Noise & Smoothing Attacks

The watermark also resists common signal processing attacks applied to graph embeddings.

Performance under Attack: (AUC scores on MIND dataset)

Table: Watermark Robustness vs. Noise and Smoothing

Method	Gaussi	an Noise	Smoothing		
cuiou	10%	50%	10%	50%	
TR	0.86	0.77	0.94	0.83	
GaussianShading	0.89	0.85	0.90	0.83	
W/O LAWMM	0.98	0.91	0.95	0.89	
KGMark	0.99	0.92	0.96	0.90	

Experiment Result: Robustness - Noise & Smoothing Attacks

Analysis:

- KGMark shows great resilience, with an AUC of **0.92** under 50% Gaussian noise and **0.90** under 50% smoothing.
- The variant without the learnable mask (W/O LAWMM) is also robust, confirming LAWMM is mainly for transparency.
- These results validate KGMark's balance of robustness and usability under aggressive attacks.

Experiment Result: Detectability

KGMark's watermark is highly detectable, but performance depends on key hyperparameters.

DDIM Steps & Significance:

Figure: AUC vs. Sig. Level

- \bullet At optimal sig. levels (10⁻⁵), more DDIM steps improve AUC.
- At higher sig. levels (10^{-3}) , it can increase False Positives.

Experiment Result: Detectability

Stage Alignment:

Figure: AUC vs. Emb./Det. Time Steps

- Aligning embedding and detection DDIM steps is critical.
- The detection stage has more influence on accuracy.

Case Study: News Recommendation

Question: Does the watermark impact a real-world downstream task?

Experimental Setup:

Figure: Comparison of recommendations shows consistent topics and entities.

- Task: News recommendation using the DKN model.
- Dataset: MIND (large-scale news dataset).
- **Scenario:** Compare recommendations for a sports-focused user using the original vs. watermarked KG.

Case Study: News Recommendation

Findings:

- The content, subcategories, and hot topics of the recommendations remained consistent.
- Entity recognition was stable, indicating no degradation in the KG's semantic quality.
- **Conclusion:** The watermark is transparent and does not negatively impact this complex downstream application.

Discussion and Future Work

VAE and Latent Space:

- The choice of graph encoder involves a trade-off: expressive models (like RGAT) can be more vulnerable to certain attacks than simpler, more robust models (like GCN).
- KGMark's design requires balancing representation quality with attack susceptibility.

Future Directions:

- **Embedding Dimensions:** Exploring how embedding size affects the balance between task performance and watermark security.
- Advanced Samplers: Investigating compatibility with diffusion samplers beyond DDIM to improve quality and transparency.
- **New Applications:** Extending the framework to other structured data domains like GraphRAG.

Conclusion

Contributions:

- Introduced KGMark, the first diffusion watermarking scheme for knowledge graphs.
- Our method successfully provides robustness, transparency, and detectability, protecting synthetic graph data.
- Key innovations include:
 - A Learnable Adaptive Watermark Mask (LAWMM) for transparency.
 - A hierarchical, redundant embedding strategy for robustness.
 - A likelihood-based statistical test for reliable detection.

Impact:

- KGMark provides a foundation for securing the integrity and ownership of synthetic KGs.
- It enables trustworthy use of KGs in applications like recommendation systems and semantic search.

The End

Thanks For Your Listening.