
KGMark: A Diffusion Watermark for Knowledge Graphs

Hongrui Peng, Haolang Lu, Yuanlong Yu, Weiye Fu, Kun Wang,
Guoshun Nan

Beijing University of Posts and Telecommunications

Nanyang Technological University

ICML 2025

Peng et al. (BUPT & NTU) KGMark ICML 2025 1 / 28



Problem: Securing AI-Generated Knowledge Graphs

Context:

Knowledge Graphs (KGs) are crucial for many AI applications,
including semantic search and recommendation systems.

AI models can now generate high-quality synthetic KGs.

Challenges:

Integrity & Bias: Synthetic KGs can embed biases or misleading
information, and are vulnerable to malicious alterations.

Intellectual Property: Presenting synthetic graphs as original work
can violate IP rights, undermining trust.

Technical Gap: Existing watermarking fails on dynamic graphs due
to spatial and temporal variations.

Goal:

To develop the first watermarking framework for KGs that generates
robust, detectable, and transparent fingerprints.
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Motivation and State-of-the-Art

Limitations of Prior Work:

Conventional watermarking lacks robustness against the
spatial-temporal variations of dynamic KGs.
The heterogeneity of KGs requires embedding at the embedding level
to balance fidelity and resilience.
No existing method effectively handles unique graph attacks like
isomorphism and structural perturbations.

Open Questions Addressed by this Paper:

Can we design a robust watermark for KGEs against structural and
temporal changes?
Is it possible to embed a watermark with minimal impact on the KG’s
quality and downstream task performance?
Can we create a secure and computationally feasible algorithm?

KGMark is the first framework to systematically solve these issues
for KGs using a novel diffusion-based approach.
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KGMark: The Three Pillars

KGMark is a comprehensive framework designed to satisfy the three
essential properties of an effective watermark.

Transparency

Minimal impact on
the KG’s usability.

Preserves graph
structure and
semantics.

Detectability

Accurate
identification of the
watermark’s
presence.

High detection
rates with
confidence.

Robustness

Resilience to
attacks and
modifications.

Withstands
post-editing and
structural changes.
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Figure: KGMark ensures Transparency, Detectability, and Robustness.
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Methodology: KGMark’s Pipeline

The framework embeds and extracts the watermark by manipulating the
latent space of a diffusion model.
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Figure: From a target KG to a watermarked graph, and its verification after potential
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Methodology: KGMark’s Pipeline

1 Pre-processing: The KG undergoes community detection and graph
alignment to normalize its structure.

2 Embedding: The graph is encoded into a latent representation Z0.
DDIM is used to get the initial noise vector ZT .

3 Watermark Injection: A signature S is embedded into the frequency
domain of ZT using a learnable mask M.

4 Decoding: The watermarked noise vector Zw
T undergoes reverse

diffusion to generate the watermarked graph Gw .

5 Extraction: For a given graph, the process is inverted to extract a
potential watermark, which is then verified statistically.
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Methodology: Watermark Injection

The watermark is embedded in the frequency domain of the latent noise
vector (ZT ) to ensure imperceptibility and robustness. This is achieved
before the reverse diffusion process begins.
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Figure: Visual overview of embedding the watermark in the frequency domain using a
mask matrix.
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Methodology: Watermark Injection

Injection Process:

1 The Fourier Transform (F ) is applied to both the noise vector ZT and
the signature S .

2 The frequency components are combined using the mask M:

∆ = F (ZT ) · (1−M) + F (S) ·M

This replaces selected parts of the noise spectrum with the
watermark’s spectrum.

3 The Inverse Fourier Transform (F−1) is applied to create the
watermarked noise vector Zw

T = F−1(∆).

4 This new vector Zw
T is then fed into the DDIM’s reverse process to

generate the final watermarked graph.
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Key Innovation I: Learnable Adaptive Watermark Mask
(LAWMM)

Goal: Embed the watermark transparently with minimal disruption to the
KG’s utility.

Challenge:

Watermark embedding inevitably introduces distortion. How can we
control this distortion to preserve the graph’s integrity?

Solution: LAWMM

A learnable, adaptive mask matrix (LAWMM) is optimized for
each graph’s unique structure.

This mask controls where and how the watermark is injected into the
latent space.
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Key Innovation I: Learnable Adaptive Watermark Mask
(LAWMM)

Mechanism:

The mask is trained by minimizing the discrepancy between the
original and watermarked latent vectors, preserving the Latent Space
Equilibrium.

A ”sample-then-embed” strategy with a correction term αS ·M (α is
a tunable coefficient) is adopted, ensuring better alignment in the
latent space.

L =
∑

j∈[1,T ]

∥∥∥Z INV
T −kj

−
[
fw

(
f
kj
DDIM(Z INV

T , T ),S,M
)
+ αS ·M

]∥∥∥2 .
This balances imperceptibility and robustness by placing the
watermark in less critical latent regions.
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Key Innovation II: Defending Structural Variations

Goal: Ensure the watermark survives attacks unique to graph data.

Isomorphism Variations

Graphs can have the same structure but different node orderings
(isomorphism), which alters their matrix representation.
Solution: Graph Alignment. KGMark normalizes graphs by
reordering vertices based on degree and clustering coefficient, creating
a canonical representation.

Structural Variations (Attacks)

Attackers can add/remove edges or nodes to destroy the watermark.
Solution: Redundant Hierarchical Embedding. KGMark partitions
the graph into communities and embeds the watermark redundantly
across them.

1 Global (Community Layer): Injects into a community’s spectral
profile.

2 Local (Vertex Layer): Encodes via edge-weights around
high-centrality nodes.
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Key Innovation III: Likelihood-Based Verification

Goal: Reliably and accurately detect a watermark with statistical
confidence.

Challenge:

Random noise can sometimes resemble a watermark. We need a
rigorous method to distinguish a true signal from chance.

Solution: A Hypothesis Test

Watermark detection is formulated as a statistical hypothesis test:

H0 (Null Hypothesis): The graph is clean; extracted noise is standard
Gaussian N (0, σ2IC).
H1 (Alternative Hypothesis): The graph is watermarked; noise
deviates from the standard.
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Key Innovation III: Likelihood-Based Verification

Mechanism:

To integrate the distance metric d(·, ·) and the signature extraction
function fex, we define the residual vector R as the difference between
the extracted signature and the optimal reference signature K∗ ∈ S.

R = fex(M,G)−K∗

A test statistic, T̂ , is computed from the extracted signature.

T̂ =
1

σ2

∑
i∈M

|Ri |2

Under H0, this statistic follows a known noncentral chi-squared
(χ2) distribution.

We calculate the p-value: p = Pr(χ2 ≤ T̂ |H0).

If p is below a significance level (e.g., 10−5), we confirm the
watermark’s presence.
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Experimental Setup: Datasets & Attacks

Datasets

Three public KG datasets from diverse domains were used:

Alibaba-iFashion (AliF): E-commerce

MIND: News recommendation

Last-FM: Music

Attacks Evaluated

Robustness was evaluated against a wide range of post-editing
attacks:

Structural: Relation Alteration, Triple Deletion.

Noise-based: Gaussian Noise Injection & Smoothing.

Topological: Graph Isomorphism Variation (IsoVar).

Adversarial: L2 Metric and NEA graph poisoning attacks.

Evaluation Metrics

Detectability & Robustness: Area Under Curve (AUC).

Transparency: Cosine Similarity, GMR, HMR, AMR, and Hits@10.
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Experimental Setup: Details & Variants

Implementation Details

The knowledge graph is first embedded using the RotatE model.

The embedding dimension was set to 4096.

All experiments were conducted on a single NVIDIA A800 GPU.

Ablation Variants

W/O LAWMM: Uses a fixed watermark mask matrix instead of the
learnable one to test the mask’s effectiveness.

Only CL: Applies the watermark exclusively in the Community Layer.

Only VL: Applies the watermark exclusively in the Vertex Layer.

Baselines

TreeRing & GaussianShading: Watermarking methods for diffusion
models on images, adapted for graphs.

DwtDct & DetQim: Classical watermarking techniques that modify
transformed coefficients.
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Experiment Result: Transparency

KGMark preserves the KG’s structural integrity and utility for downstream
tasks.

Table: Watermark Transparency Result on AliF

Datasets Method
Cosine Similarity ↑ KG Quality Metric @ 75 Steps

50 Steps 65 Steps 75 Steps GMR ↓ HMR ↓ AMR ↓ Hits@10 ↑

AliF

Original KG - - - 1.828 1.162 135.459 0.8980
W/O Watermark 0.7971 0.8797 0.9674 3.026 1.579 141.412 0.8318
DwtDct 0.7215 0.7928 0.8251 5.096 1.699 157.036 0.6933
DctQim 0.7509 0.7633 0.7653 5.104 1.654 161.142 0.7385
TreeRing 0.7761 0.8431 0.9071 3.928 1.618 152.634 0.8017
GaussianShading 0.2879 0.3226 0.3538 6.641 1.798 172.813 0.5137
W/O LAWMM 0.7662 0.7838 0.8643 3.457 1.624 147.305 0.7871
KGMark 0.7839 0.8309 0.9482 3.046 1.580 141.904 0.8296
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Experiment Result: Transparency

Minimal Structural Distortion:

KGMark achieves high Cosine Similarity scores (e.g., 0.9482 for AliF),
indicating the watermarked KG is structurally close to the original.

This is far better than baselines like GaussianShading (0.3538) and is
comparable to a non-watermarked reconstruction (0.9674).

Preserved Downstream Performance:

Performance on link prediction (Hits@10) is nearly on par with the
original KG.

On AliF, KGMark scores 0.8296 vs. the non-watermarked 0.8318,
confirming the KG remains functional.
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Experiment Result: Robustness - Structural Attacks

KGMark’s hierarchical embedding provides strong resilience against attacks
that alter graph structure.
Performance under Attack: (AUC scores on AliF dataset)

Table: Watermark Robustness vs. Structural and Adversarial Attacks

Method
Relation Alteration

(50%)
Triple Deletion

(50%)
Adversarial

L2 Metric NEA

DwtDct 0.8371 0.7724 0.9577 0.9638
TreeRing 0.7392 0.8091 0.9621 0.9584
Only CL (variant) 0.8864 0.8063 0.9426 0.9535
Only VL (variant) 0.9433 0.8592 0.9521 0.9676
KGMark 0.9207 0.9320 0.9841 0.9809

Analysis:

KGMark maintains a very high AUC (e.g., 0.9320) even when 50% of
graph triples are deleted.

It significantly outperforms ablated variants, showing that the
combined coarse-grained (community) and fine-grained (vertex)
embedding is essential.
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Experiment Result: Robustness - Noise & Smoothing
Attacks

The watermark also resists common signal processing attacks applied to
graph embeddings.
Performance under Attack: (AUC scores on MIND dataset)

Table: Watermark Robustness vs. Noise and Smoothing

Method
Gaussian Noise Smoothing

10% 50% 10% 50%

TR 0.86 0.77 0.94 0.83
GaussianShading 0.89 0.85 0.90 0.83
W/O LAWMM 0.98 0.91 0.95 0.89
KGMark 0.99 0.92 0.96 0.90
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Experiment Result: Robustness - Noise & Smoothing
Attacks

Analysis:

KGMark shows great resilience, with an AUC of 0.92 under 50%
Gaussian noise and 0.90 under 50% smoothing.

The variant without the learnable mask (W/O LAWMM) is also
robust, confirming LAWMM is mainly for transparency.

These results validate KGMark’s balance of robustness and usability
under aggressive attacks.
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Experiment Result: Detectability

KGMark’s watermark is highly detectable, but performance depends on key
hyperparameters.

DDIM Steps & Significance:
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Figure: AUC vs. Sig. Level

At optimal sig. levels (10−5), more DDIM steps improve AUC.

At higher sig. levels (10−3), it can increase False Positives.
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Experiment Result: Detectability

Stage Alignment:

50 55 60 65 70 75
Detection-Time Steps

75
70

65
60

55
50

Em
be

dd
in

g-
Ti

m
e 

St
ep

s

0.990

0.992

0.994

0.996

0.998

1.000

AU
C

Figure: AUC vs. Emb./Det. Time Steps

Aligning embedding and detection DDIM steps is critical.

The detection stage has more influence on accuracy.

Peng et al. (BUPT & NTU) KGMark ICML 2025 23 / 28



Case Study: News Recommendation

Question: Does the watermark impact a real-world downstream task?

Experimental Setup:

• Football : Dantonio scoffs at dumb question 
about Michigan State's offensive staff

KG based News Recommendation KG based News Recommendation(KGMark)

• Football : Rockets guard Gerald Green 
reportedly has broken foot

Orginal KG KG (KGMark) 

• Football : Texans sign DL Javier Edwards to 
practice squad

• NBA : Lakers' Alex Caruso spawns 
Internet memes, but has real game

• NBA : Doncic received stitches but didn't 
suffer concussion vs. Lakers

• Football : Pac-12 power rankings: 
Defeats of ranked opponents...

Football

Lakers

Michigan

NBA

…… 
EntitiesEntities ProtraitPortrait

DKN DKN

Figure: Comparison of recommendations shows consistent topics and entities.

Task: News recommendation using the DKN model.

Dataset: MIND (large-scale news dataset).

Scenario: Compare recommendations for a sports-focused user using
the original vs. watermarked KG.
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Case Study: News Recommendation

Findings:

The content, subcategories, and hot topics of the recommendations
remained consistent.

Entity recognition was stable, indicating no degradation in the KG’s
semantic quality.

Conclusion: The watermark is transparent and does not negatively
impact this complex downstream application.

Peng et al. (BUPT & NTU) KGMark ICML 2025 25 / 28



Discussion and Future Work

VAE and Latent Space:

The choice of graph encoder involves a trade-off: expressive models
(like RGAT) can be more vulnerable to certain attacks than simpler,
more robust models (like GCN).

KGMark’s design requires balancing representation quality with attack
susceptibility.

Future Directions:

Embedding Dimensions: Exploring how embedding size affects the
balance between task performance and watermark security.

Advanced Samplers: Investigating compatibility with diffusion
samplers beyond DDIM to improve quality and transparency.

New Applications: Extending the framework to other structured
data domains like GraphRAG.
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Conclusion

Contributions:

Introduced KGMark, the first diffusion watermarking scheme for
knowledge graphs.

Our method successfully provides robustness, transparency, and
detectability, protecting synthetic graph data.

Key innovations include:
A Learnable Adaptive Watermark Mask (LAWMM) for
transparency.
A hierarchical, redundant embedding strategy for robustness.
A likelihood-based statistical test for reliable detection.

Impact:

KGMark provides a foundation for securing the integrity and
ownership of synthetic KGs.

It enables trustworthy use of KGs in applications like recommendation
systems and semantic search.
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The End

Thanks For Your Listening.
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