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Problem Statement

Fact: Using preference data outperforms methods based on positive
examples only, e.g., supervised fine-tuning vs. alignment phase.

How can preferences explain these empirical performance gains?

Setting: Estimation for parametric distributions and preferences.

Samples: (Xi ,Yi)i∈[n] ∼ p⊗[2n]
θ⋆ with θ⋆ ∈ Θ ⊆ Rk and X ⊆ Rd .

Preference ℓθ⋆ , e.g., ℓθ(x , y) = rθ(x)− rθ(y) and rθ = log pθ.

☞ Stochastic: Zi =

{
1 with probability 1/(1 + e−ℓθ⋆ (Xi ,Yi ))

−1 otherwise
.

☞ Deterministic: Zi = sign(ℓθ⋆(Xi ,Yi)) .

Baseline: The sample-only maximum likelihood estimator is

θ̂SO
n ∈ argmin

θ∈Θ
LSO

n (θ) with LSO
n (θ) := −

∑
i∈[n]

log p⊗2
θ (Xi ,Yi) . (SO MLE)
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Preference-based M-estimator

The stochastic preferences MLE is

θ̂SP
n ∈ argmin

θ∈Θ
{LSO

n (θ) +
∑
i∈[n]

log
(

1 + e−Ziℓθ(Xi ,Yi )
)
} . (SP MLE)

θ̂SPdet
n defined similarly when preferences are deterministic.

Theorem (Smaller asymptotic variance)
Under regularity and geometric assumptions on pθ and ℓθ:
☞ θ̂SO

n , θ̂SP
n and θ̂SPdet

n are asymptotically normal estimators,
☞ with asymptotic variance V SPdet

θ⋆ ⪯ V SP
θ⋆ ⪯ V SO

θ⋆ .
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Beyond M-estimators for deterministic preferences

Minimizers of the empirical 0-1 loss are

Cn := argmin
θ∈Θ

∑
i∈[n]

1 (Ziℓθ(Xi ,Yi) < 0) = {θ | ∀i ∈ [n], Ziℓθ(Xi ,Yi) ≥ 0} .

Any estimator θ̂AE
n ∈ Cn. The deterministic preferences MLE is

θ̂DP
n ∈ argmin

{
LSO

n (θ) | θ ∈ Cn
}
. (DP MLE)
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Upper bound on the estimation error

Theorem (Fast estimation rate within Cn)
For Gaussian distributions with known Σ and rθ = log pθ, for all
n ≥ Õ(log(1/δ)), with probability 1 − δ,

∀θ̂n ∈ Cn,
∥∥∥θ̂n − θ⋆

∥∥∥
Σ
≤ O

(
Ad

n
log(1/δ) log n

)
with Ad =+∞ O(

√
d) .

Theorem also holds under geometric assumptions on pθ and ℓθ:

☞ Identifiability under preferences feedback,

☞ Linearization validity of the preferences constraints,

☞ Positive and regular p.d.f. of ℓθ⋆ (Xi ,Yi )
−⟨u,∇θ⋆ℓθ⋆ (Xi ,Yi )⟩ near 0 for all u.
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Lower bound on the estimation error

Theorem (Fast estimation rate is minimax optimal)
For Gaussian distributions with known Σ and rθ = log pθ, for all n,

inf
θ̂n

sup
θ⋆∈Θ

E
q⊗[n]
θ⋆,hdet

[∥∥∥θ̂n − θ⋆
∥∥∥
Σ

]
≥ Ω

(
min

{
Ad

√
d

n
,

√
d
n

})
.

Theorem also holds under geometric assumptions on pθ and ℓθ:

☞ Squared Hellinger distance is bounded by a quadratic,

☞ The Bhattacharyya coefficient restricted to the set of paired
observations with disagreeing preference is Lipschitz.
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Empirical validation for Gaussians and rθ = log pθ

Figure: Estimation error with N (θ⋆, Id ) where θ⋆ ∼ U([1, 2]d ), as a function of
(a) the sample size n for d = 20 and (b) the dimension d for n = 104.
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Conclusion

Benefits of additional preference feedback:

1. Preference-based M-estimators have
smaller asymptotic variance than
sample-only M-estimators.

2. The deterministic preference-based MLE
achieves an accelerated estimation error
rate of O(1/n), significantly improving
upon the rate Θ(1/

√
n) of M-estimators.

3. This matches the minimax lower bound of
Ω(1/n), up to problem-specific constants.
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