Learning Parametric Distributions from Samples and
Preferences

Marc Jourdan, Gizem Yice, Nicolas Flammarion

cPrL
July 14th, 2025

Jourdan, Yiice, Flammarion (EPFL) Learning from Samples and Preferences July 14th, 2025



Problem Statement

Fact: Using preference data outperforms methods based on positive
examples only, e.g., supervised fine-tuning vs. alignment phase.

How can preferences explain these empirical performance gains?

Setting: Estimation for parametric distributions and preferences.
Samples: (X;, Yi)ien ~ pe* I with #* € © C R and X C RY.

Preference /y-, e.q., ly(x,y) = ro(x) — ro(y) and ry = log ps.

1 with probability 1/(1 + e~fo* (X))
—1 otherwise '
Deterministic: Z; = sign(¢y-(Xj, Yi)) .

Stochastic: Z =

Baseline: The sample-only maximum likelihood estimator is

030 € argmin L3°(0) with L5°(0) := — > log p?(X;, Yi) . (SO MLE)

0c© Pl
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Preference-based M-estimator

The stochastic preferences MLE is

8P € argmin{L3°(9) —i—Zlog (1 + efz,zg(x,-,y,)>} . (SP MLE)
0cO

ie[n]

g5Pe defined similarly when preferences are deterministic.

Theorem (Smaller asymptotic variance)

Under regularity and geometric assumptions on py and ¢y:
w650, 6P and 657 are asymptotically normal estimators,
v with asymptotic variance Vi, “ < V5P < V50.
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Beyond M-estimators for deterministic preferences

Minimizers of the empirical 0-1 loss are

Cni=argmin > 1(Zile(X;, i) < 0) ={0 | Vi € [n], Zity(X;, Yi) = 0} .
6ce e

Any estimator #4E € C,,. The deterministic preferences MLE is

2% € argmin {L5°(0) | 6 € Cn ) . (DP MLE)
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|
Upper bound on the estimation error

Theorem (Fast estimation rate within C,)

For Gaussian distributions with known = and ry = log py, for all
n > O(log(1/0)), with probability 1 — ¢,

~

VO, € Ch, ||0p— 0"

- <0 </:;j log(1/0) log n> with Ag =100 O(Vd).

4

Theorem also holds under geometric assumptions on py and /y:
Identifiability under preferences feedback,
Linearization validity of the preferences constraints,

iti Lox )(17\/I)
Positive and regular p.d.f. of —<u,v99*(zg*(x,-,yi)> near O for all u.
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Lower bound on the estimation error

Theorem (Fast estimation rate is minimax optimal)
For Gaussian distributions with known ~ and ry = log py, for all n,

Jza(me{22 21)

~

On — 0"

inf sup E g [

On 0*€© 0% hyy

Theorem also holds under geometric assumptions on py and 4:
Squared Hellinger distance is bounded by a quadratic,

The Bhattacharyya coefficient restricted to the set of paired
observations with disagreeing preference is Lipschitz.
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|
Empirical validation for Gaussians and ry = log py
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n d

Figure: Estimation error with A/(6*, I;) where 6* ~ U([1,2]9), as a function of
(a) the sample size n for d = 20 and (b) the dimension d for n = 10*.
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Conclusion
Benefits of additional preference feedback: Paper & Poster
1. Preference-based M-estimators have E..'._EE

smaller asymptotic variance than
sample-only M-estimators.

[=:

2. The deterministic preference-based MLE n
achieves an accelerated estimation error E ] E
rate of O(1/n), significantly improving .
upon the rate ©(1/+/n) of M-estimators. .

3. This matches the minimax lower bound of E

Q(1/n), up to problem-specific constants.
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