

Efficient Quantification of Multimodal Interaction at Sample Level

Zequn Yang, Hongfa Wang, Di Hu*

zqyang@ruc.edu.cn

2025-06-16

Introduction

Multimodal Interaction

Multimodal interaction describe the way information contains in each modalities or their integration, including Redundancy, Uniqueness and Synergy.

Introduction

■ Partial Information Decomposition [1]

According to Partial Information Decomposition, multimodal information $I(X_1, X_2; Y)$ can be divided into four distinct and positive components.

$$I(X_1; Y) = R + U_1$$

 $I(X_2; Y) = R + U_2$
 $I(X_1, X_2; Y) = R + U_1 + U_2 + S$

[1] P. L. Williams and R. D. Beer, "Nonnegative decomposition of multi-variate information," arXiv preprint arXiv:1004.2515, 2010.

Introduction

Sample-level Interaction

Interaction within each sample can vary significantly. By contrast to dataset-level interaction [2,3], sample-level interaction provides fine-grained information and enhances interpretability for multimodal learning [3,4].

Multimodal information

^[2] N. Bertschinger, J. Rauh, E. Olbrich, J. Jost, and N. Ay, "Quantifying unique information," Entropy, vol. 16, no. 4, pp. 2161–2183, 2014.

^[3] P. P. Liang, Y. Cheng, X. Fan, C. K. Ling, S. Nie, R. Chen, Z. Deng, F. Mahmood, R. Salakhutdinov, and L.-P. Morency, "Quantifying & modeling multimodal interactions: An information decomposition framework," in *Advances in Neural Information Processing Systems*, 2023.

^[4] J. T. Lizier, B. Flecker, and P. L. Williams, "Towards a synergy-based approach to measuring information modification," in 2013 IEEE Symposium on Artificial Life (ALIFE). IEEE, 2013, pp. 43–51.

Method

■ Interaction Decomposition Framework

We propose the interaction decomposition framework and apply reasonable measure to ensure the information quantities monotonically decrease along the path.

Method

Lightweight Estimation over Continuous Distribution

We use the KNIFE estimator [5] to compute continuous entropy, then derive information components and measure sample-level interactions.

Algorithm 1 Lightweight Sample-wise Multimodal Interaction Estimation (LSMI) Algorithm

- 1: **Input:** Bimodal data x_1, x_2 , target y; discriminative models $p(y|x_1, x_2), p(y|x_1), p(y|x_2)$.
- 2: **Initialize:** Entropy estimators $h_{\theta_1}(\cdot), h_{\theta_2}(\cdot)$.
- 3: Train entropy estimators h_{θ_1} , h_{θ_2} using Equation 7 on data from $p(x_1)$, $p(x_2)$ respectively.
- 4: Compute sample-wise $h(x_1), h(x_2)$ using $h_{\theta_1}, h_{\theta_2}$; then compute $h(x_1|y), h(x_2|y)$ via Equation 8.
- 5: Compute pointwise redundancy indicators r^+, r^- via Equation 5; then redundancy $r \leftarrow r^+ r^-$.
- 6: Compute pointwise $i(x_1; y), i(x_2; y), i(x_1, x_2; y)$ using $p(y|x_1), p(y|x_2), p(y|x_1, x_2)$; then derive interactions u_1, u_2, s via Equation 2.
- 7: **Output:** Sample-wise interactions r, u_1, u_2, s .

[5] G. Pichler, P. J. A. Colombo, M. Boudiaf, G. Koliander, and P. Piantanida, "A differential entropy estimator for training neural networks," in *International Conference on Machine Learning*. PMLR, 2022, pp. 17 691–17 715.

Experiment

■ Validation

We validate the precision of our method over sythetic dataset with preset interaction.

Experiment

■ Estimation

Dataset	KS			Food-101			UR-Funny			CMU-MOSEI						
Interaction	R	U_1	U_2	S	R	U_1	U_2	S	R	U_1	U_2	S	R	U_1	U_2	S
PID-Batch	3.16	0.02	0.19	0.01	4.23	0.24	0.00	0.14	0.02	0.03	0.01	0.06	0.18	0.34	0.02	0.03
LSMI	3.28	0.11	0.00	0.03	4.19	0.34	0.00	0.08	0.02	0.12	0.01	0.24	0.13	0.22	0.01	0.00
Human	2.32	1.61	1.45	0.48	4.06	0.92	0.05	0.00	2.30	2.73	2.33	2.50	3.27	3.37	2.87	1.03

Table 2: Comparison of average interaction over various real-world datasets.

We apply LSMI to estimate dataset interactions and compare those learned by different multimodal methods.

Method	R	U_1	U_2	S				
Feature-level fusion								
Joint	3.165	0.143	0.000	0.122				
MMIB	3.284	0.113	0.000	0.030				
Bilevel	2.604	0.552	0.000	0.277				
Decision-level fusion								
Additive	3.397	0.006	0.000	0.029				
Weighted	3.399	0.010	0.000	0.024				
QMF	3.400	0.002	0.000	0.032				
Additional Regulation								
Mod-drop	3.163	0.134	0.000	0.116				
Alignment	3.372	0.015	0.000	0.040				
Recon	2.984	0.311	0.000	0.139				

Table 4: Comparison of interaction components across different multimodal learning methods on the KS dataset.

Experiment

Application

Data		KS		CREMA-D				
	V+A	V	A	V+A	V	A		
All	0.854	0.818	0.727	0.795	0.684	0.725		
Low	0.850	0.805	0.729	0.782	0.702	0.715		
High	0.877	0.824	0.726	0.801	0.688	0.728		

Table 6: Performance comparison of ImageBind model finetuned on complete dataset (All), low-redundancy subset (Low), and high-redundancy subset (High) across unimodal and multimodal settings.

Partitioning Redundant data suitable for specific learning paradigm (ImageBind).

Figure 5: Validation on LSMI-based distillation approach.

Distillation in different ways according to data specific multimodal interaction.

Thank You for listening!

Zequn Yang, Hongfa Wang, Di Hu*

zqyang@ruc.edu.cn

2025-06-16