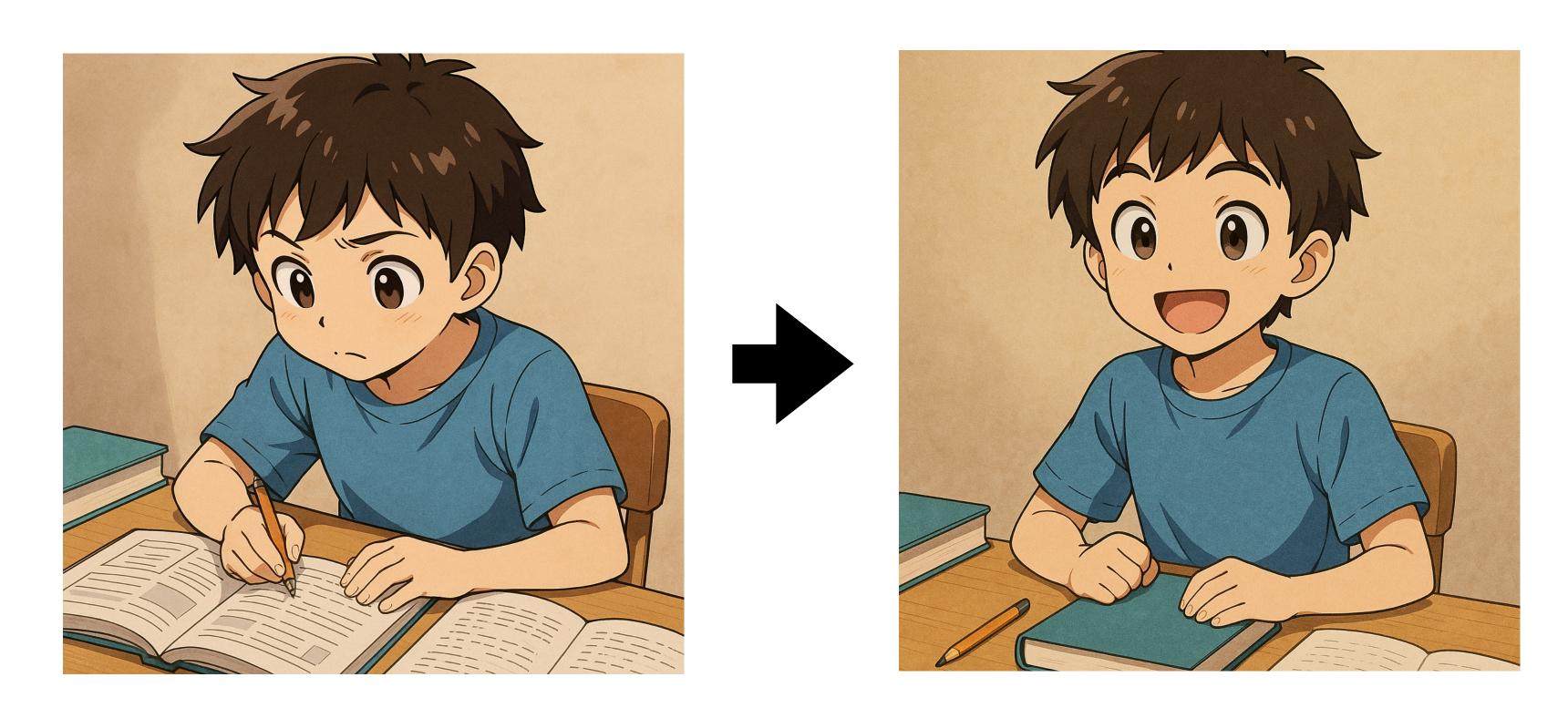


On the Power of Context-Enhanced Learning in LLMs

Xingyu Zhu*, Abhishek Panigrahi*, Sanjeev Arora

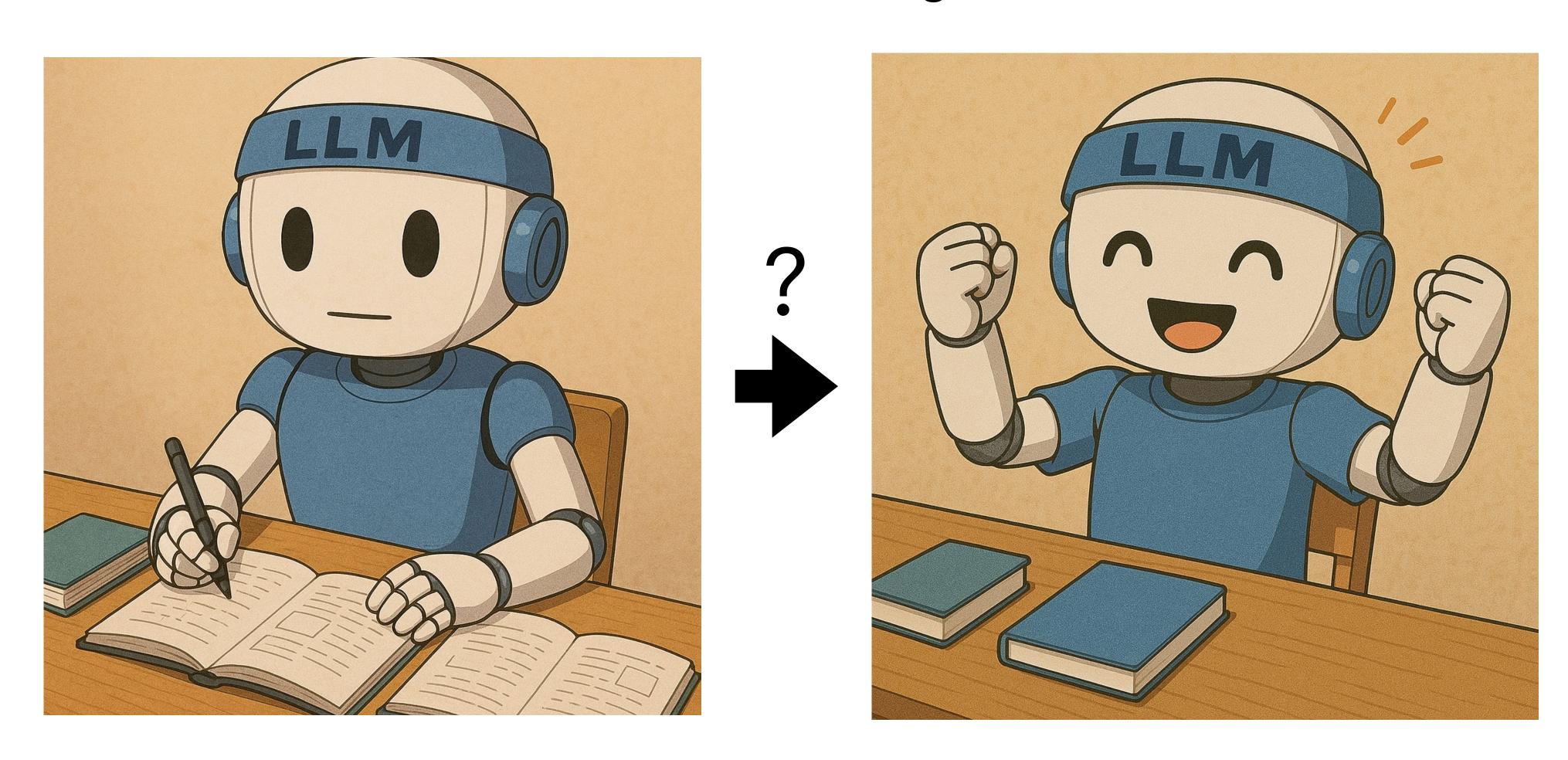
Motivation

- When studying for assignments, kids have textbooks open in front of them.
- The textbooks in context benefit their internalization of knowledge, but they usually do not verbatim memorize the textbooks.



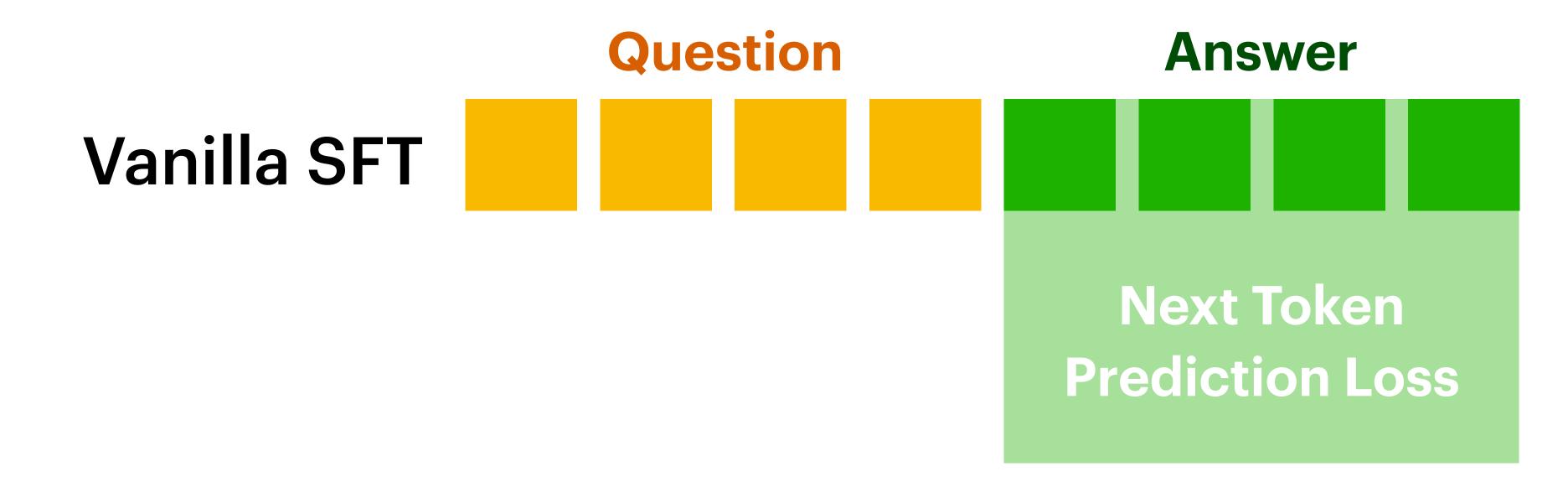
Motivation

Does similar behavior exist for the training of LLMs?

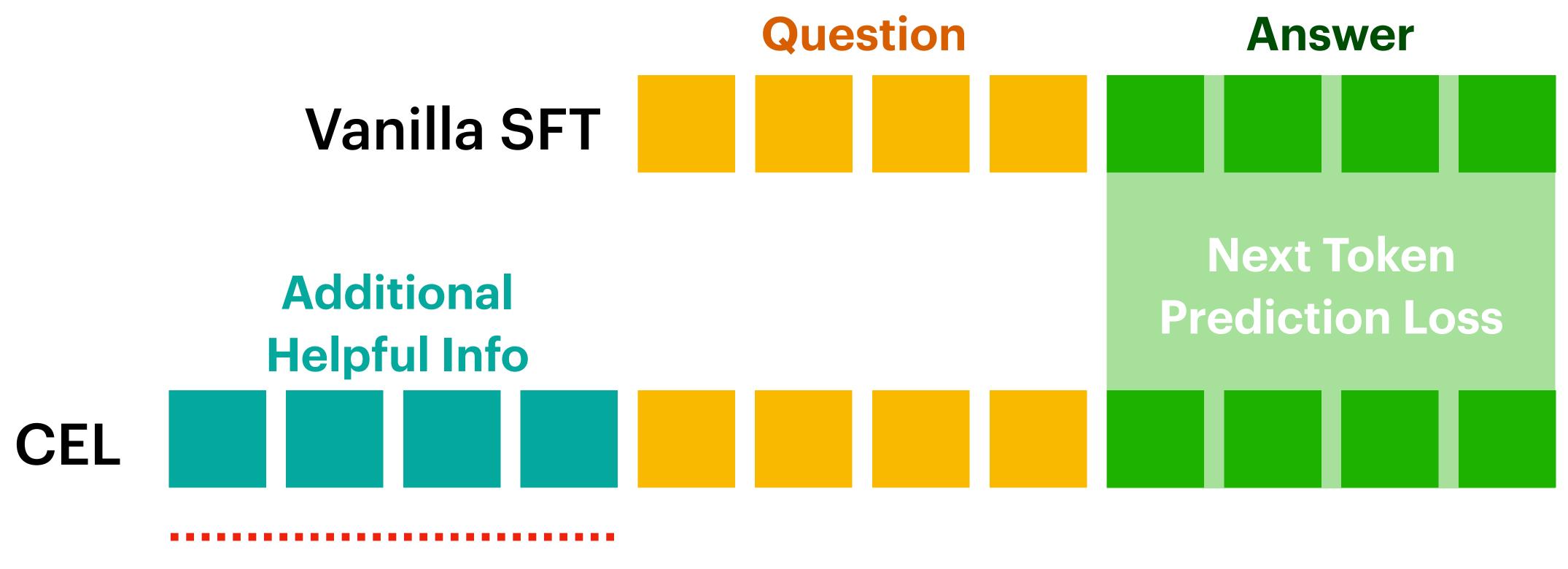


To what extent can LLM training benefit from in-context information with no gradients computed on them?

Context-Enhanced Learning (CEL)



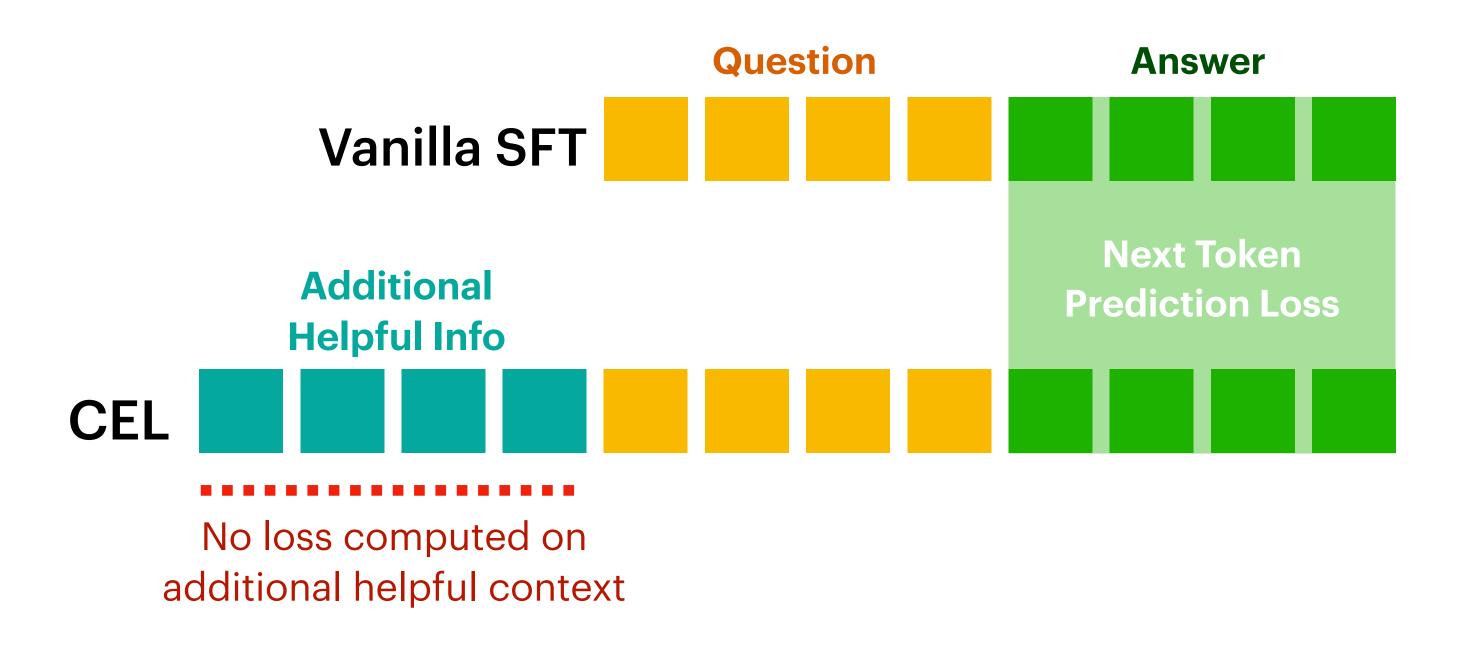
Context-Enhanced Learning (CEL)



No loss computed on additional helpful context

The additional helpful context is only presented in training

Context-Enhanced Learning (CEL)



- Examples of helpful context:
 - Few-shot examples¹
 - URLs of the source²
 - Thought-provoking guidance³

 The helpful context can depend on the input and training step in-context curriculum

¹ Liao, Huanxuan, et al. "SKIntern: Internalizing Symbolic Knowledge for Distilling Better CoT Capabilities into Small Language Models."

² Gao, Tianyu, et al. "Metadata Conditioning Accelerates Language Model Pre-training.

³ Choi, Younwoo, et al. "Teaching LLMs How to Learn with Contextual Fine-Tuning."

Main Results

- CEL (Context-enhanced learning) can be exponentially more sample efficient vs. vanilla SFT
- 2. Model requires certain ICL capability to benefit from CEL

Synthetic Testbed: Multi-Layer Translation (MLT)

• d+1 alphabets / languages

Alphabet 1

A, B, C...

Alphabet 2

a, b, c...

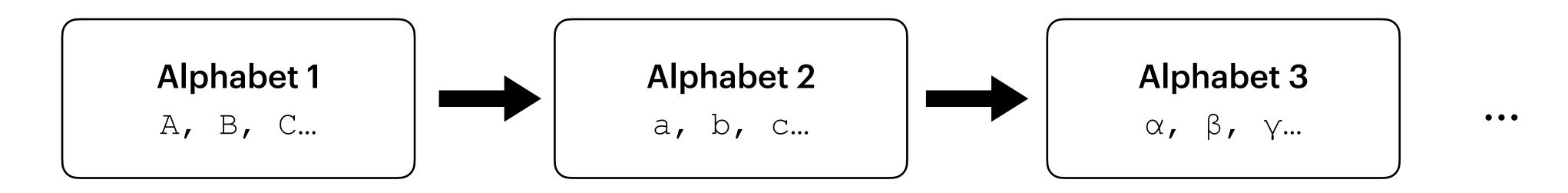
Alphabet 3

α, β, γ...

• •

Synthetic Testbed: Multi-Layer Translation (MLT)

- d+1 alphabets / languages
- \bullet d phrasebooks to translate between 2-tuples in consecutive alphabets



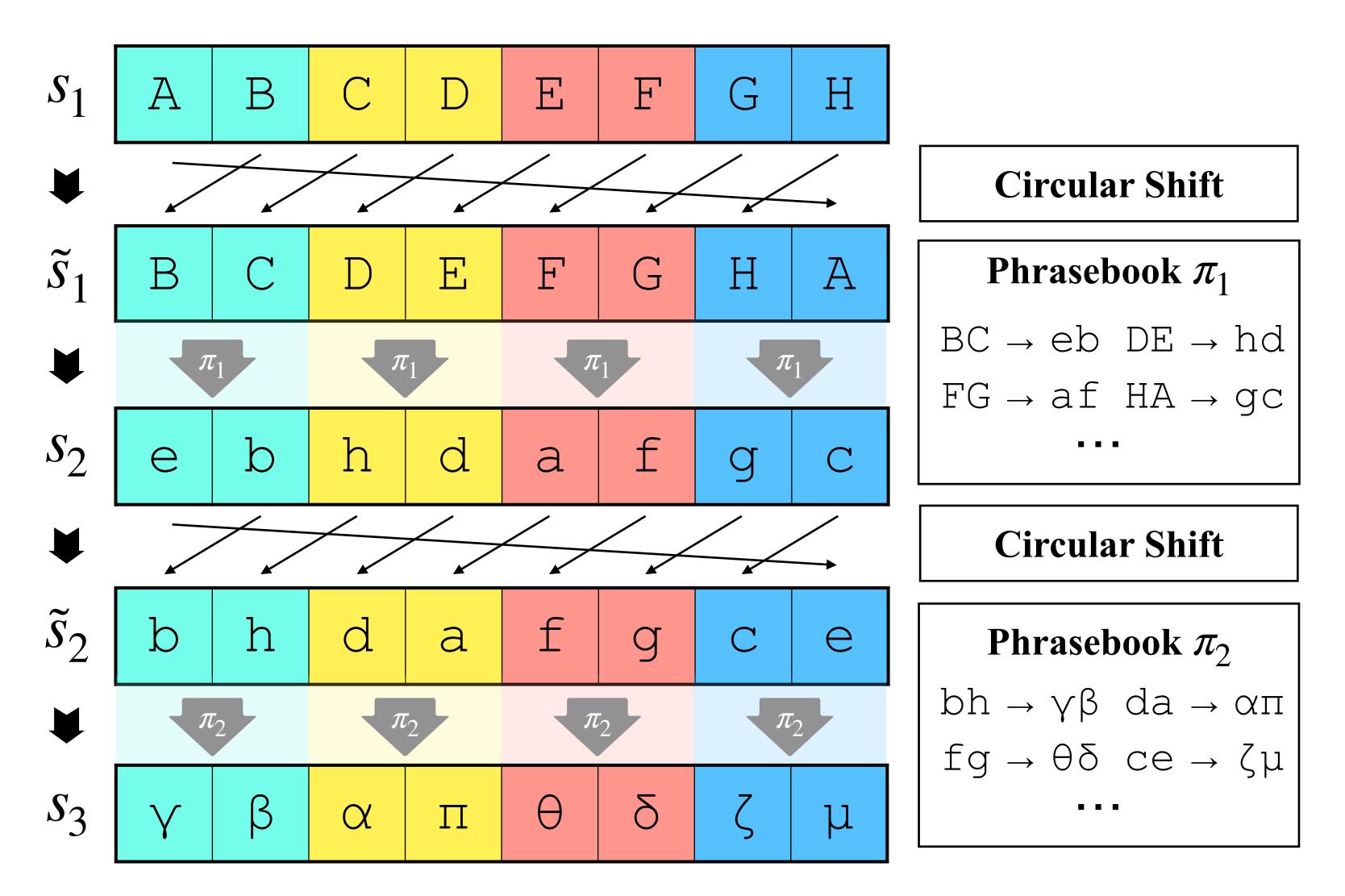
Phrasebook π_1 BC \rightarrow eb DE \rightarrow hd FG \rightarrow af HA \rightarrow gc

Phrasebook
$$\pi_2$$

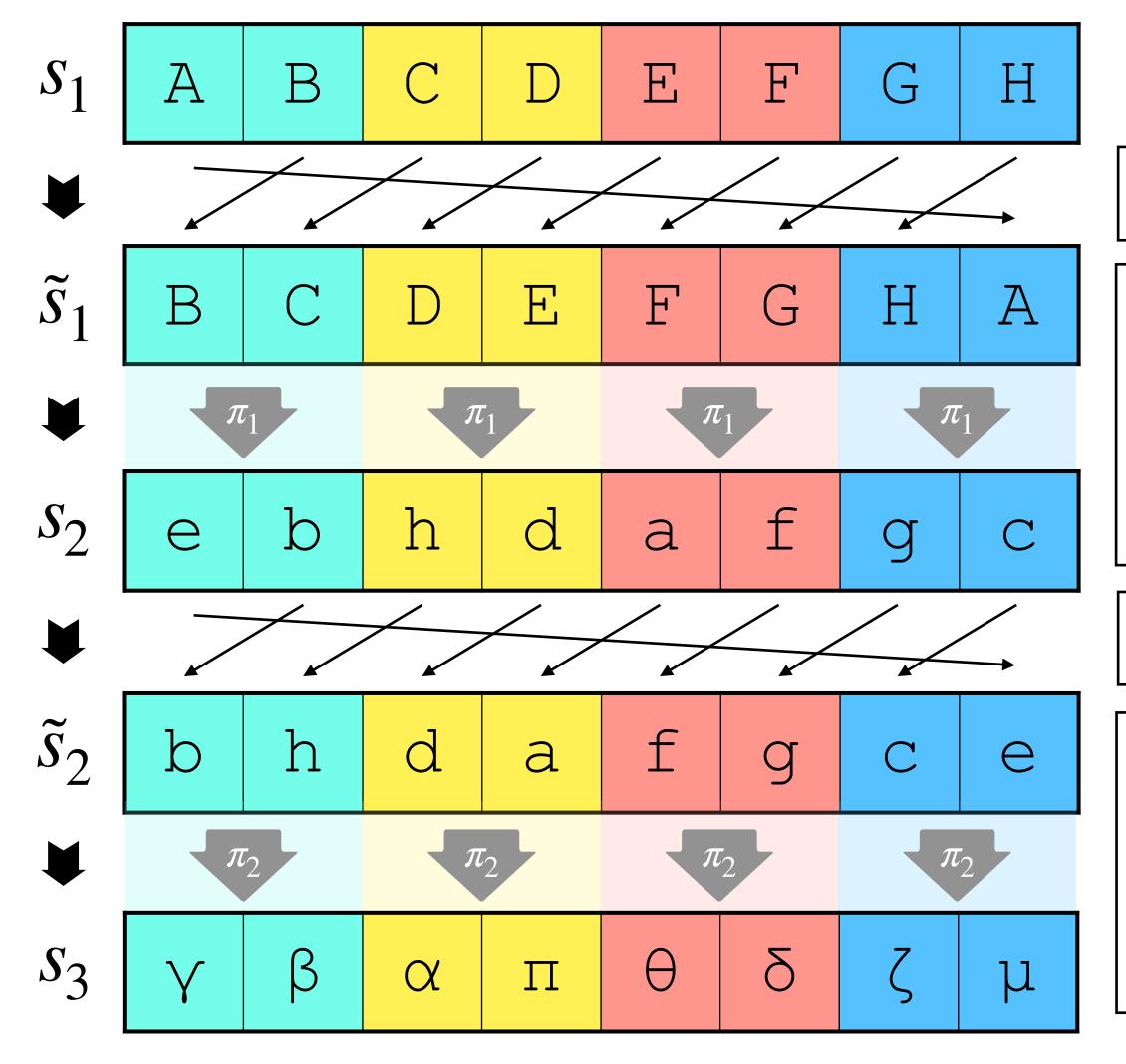
$$bh \rightarrow \gamma \beta \ da \rightarrow \alpha \pi$$

$$fg \rightarrow \theta \delta \ ce \rightarrow \zeta \mu$$

Multi-Layer Translation (MLT)



$$s_{d+1} = f_{\pi_d} \circ f_{\mathcal{O}} \circ f_{\pi_{d-1}} \circ f_{\mathcal{O}} \circ \cdots \circ f_{\pi_1} \circ f_{\mathcal{O}}(s_1)$$



Circular Shift

Phrasebook π_1

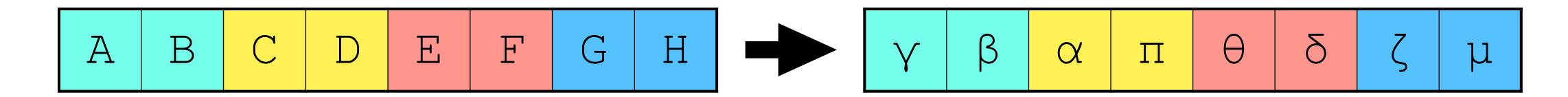
 $BC \rightarrow eb DE \rightarrow hd$ $FG \rightarrow af HA \rightarrow gc$

Circular Shift

Phrasebook π_2

Multi-Layer Translation (MLT)

• Task: Fix d phrasebooks $(\pi_1^*, \pi_2^*, ..., \pi_d^*)$, learn the translation process defined by the phrasebooks via (input, output) pairs without intermediate steps.



SFT

Prompt: Your are translating a sequence from language 1 to language 3. The input in language 1 is "A B C D E F G H".

Answer: The output in language 3 is " $\gamma \beta \alpha \pi \theta \delta \zeta \mu$ ".

Learning MLT from Input-Output is Provably Hard

- The family of d-depth MLT has SQ-dimension $e^{\Omega(d)}$ under uniformly random inputs.
- Vanilla SFT (without intermediate steps) require $e^{\Omega(d)}$ samples.

Prompt: Your are translating a sequence from language 1 to language 3. The input in language 1 is "A B C D E F G H".

Answer: The output in language 3 is " $\gamma \beta \alpha \pi \theta \delta \zeta \mu$ ".

Context-Enhanced Learning for MLT

Prompt: Your are translating a sequence from language 1 to language 3.

Use phrasebook 1: B C \rightarrow e b, F G \rightarrow a f, D E \rightarrow h d, H A \rightarrow g c and phrasebook 2: b h \rightarrow γ β , f g \rightarrow θ δ , d a \rightarrow a π , c e \rightarrow ζ μ .

The input in language 1 is "ABCDEFGH".

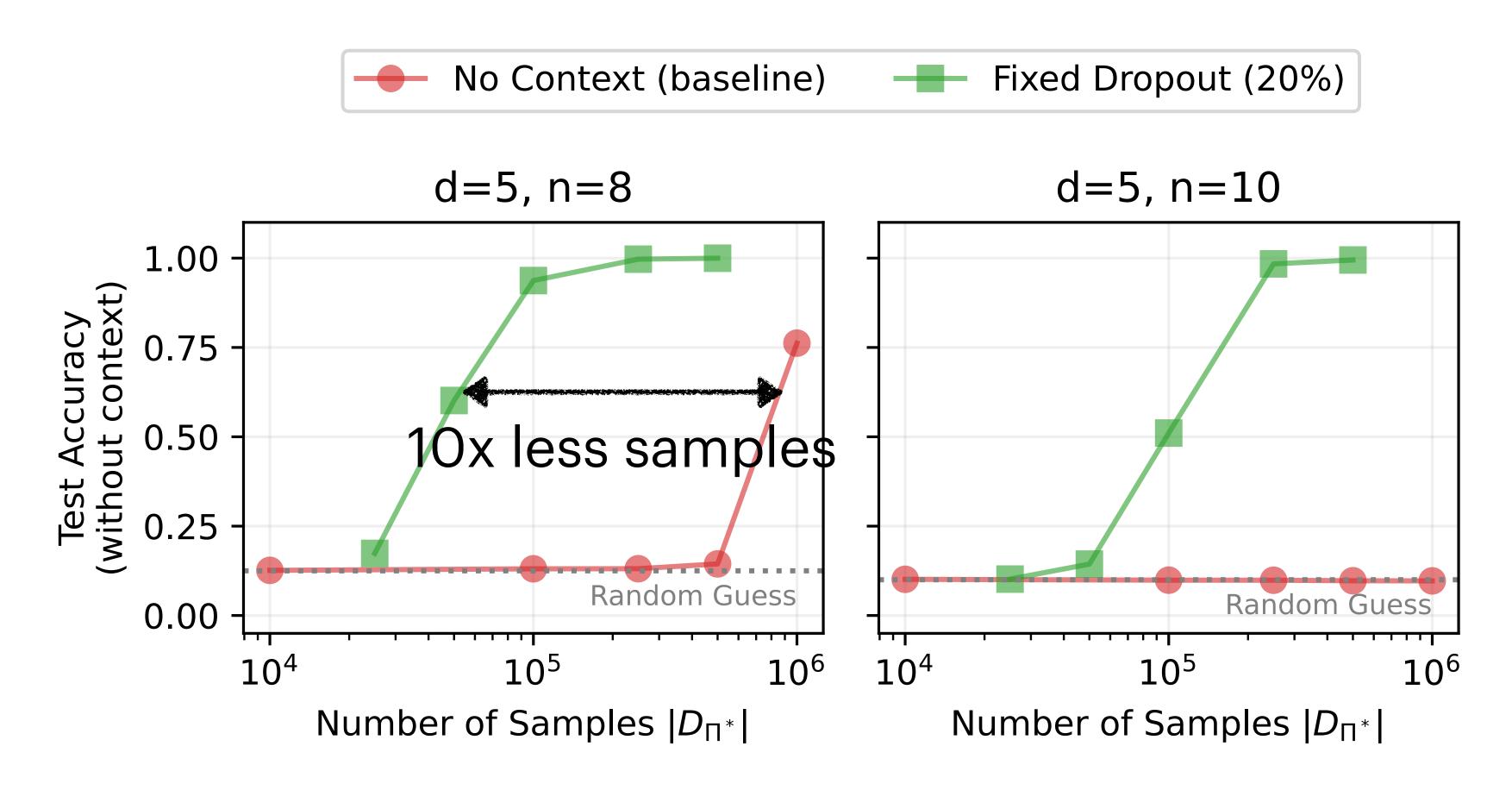
Answer: The output in language 3 is " $\gamma \beta \alpha \pi \theta \delta \zeta \mu$ ".

Two-stage training:

- Stage 1: Teach the model how to read phrasebook rules in context.
- Stage 2: Provide useful phrasebooks in context and apply random dropout.

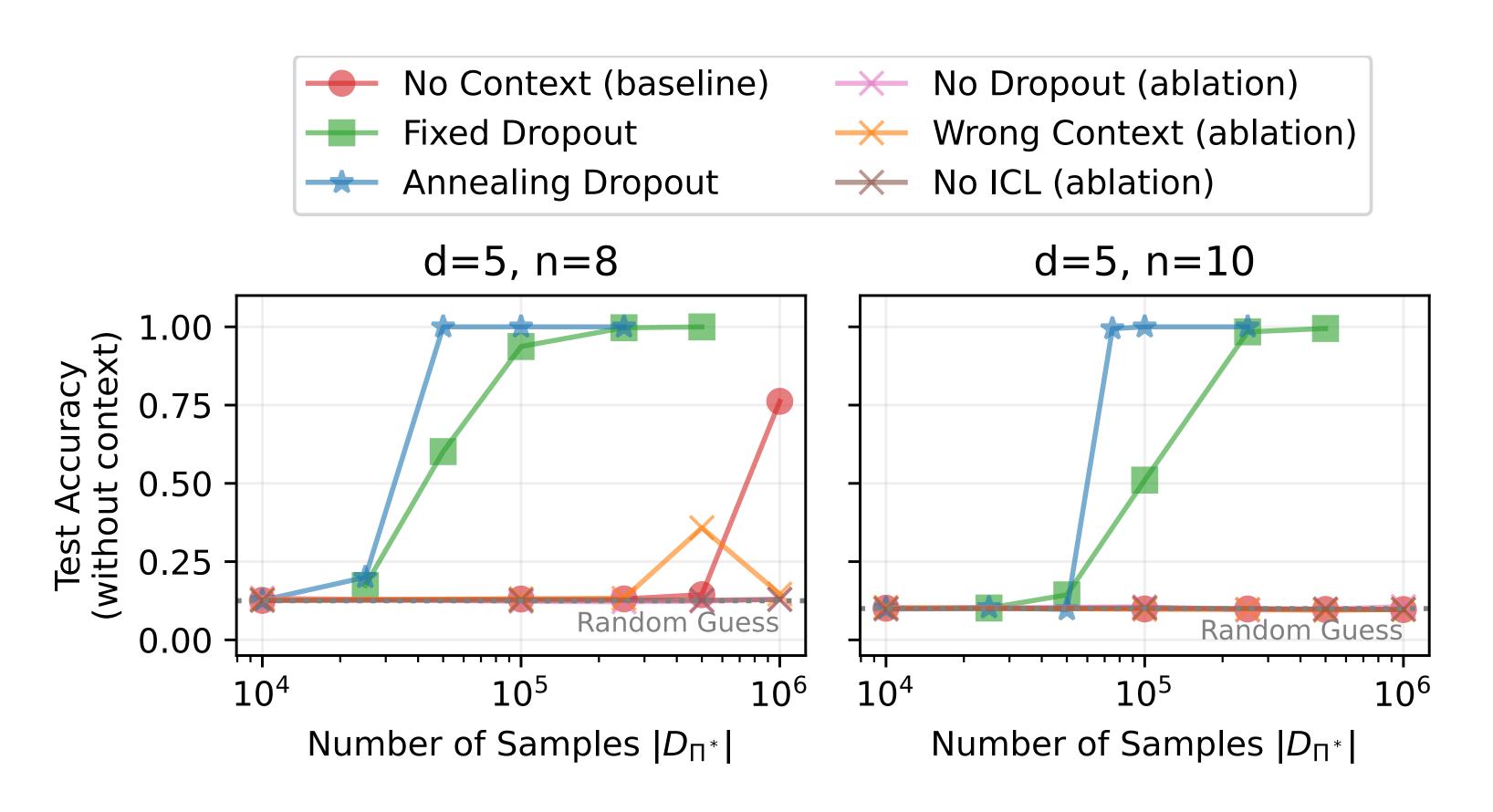
Sample Efficiency of CEL on Learning MLT

• Experiment on Llama 3.2 3B, d = 5, with 8 or 10 characters per alphabet.



Sample Efficiency of CEL on Learning MLT

• Experiment on Llama 3.2 3B, d = 5, with 8 or 10 characters per vocab.



- Better dropout curriculum leads for even faster learning.
- Dropout is required during training.
- ICL capability is required before training.

Sample Complexity Separation for Toy Model

Lower Bound: SFT

There exists an d-step MLT instance such that any gradient-based training algorithm with uniformly random input-output pairs requires at least $e^{\Omega(d)}$ gradient updates.

Upper Bound: CEL

There exists an layer-wise search algorithm*, accompanied with a dropout curriculum on the context information, that can perfectly learn any d-step MLT task with $\mathcal{O}(d\log d)$ samples.

^{*} Layer-wise GD results provable for d=2, full parameter GD results empirically verified.

Stop by our poster session @ 11:00AM - 1:30PM, July 15!

We thank Yun Cheng, Simon Park, Tianyu Gao, Yihe Dong, Zixuan Wang, Haoyu Zhao, and Bingbin Liu for discussions, suggestions, and proof-reading at various stages of the work.

References

- Gao, Tianyu, et al. "Metadata Conditioning Accelerates Language Model Pretraining.
- Liao, Huanxuan, et al. "SKIntern: Internalizing Symbolic Knowledge for Distilling Better CoT Capabilities into Small Language Models."
- Choi, Younwoo, et al. "Teaching LLMs How to Learn with Contextual Fine-Tuning."
- Deng, Y., Choi, Y., and Shieber, S. From explicit cot to implicit cot: Learning to internalize cot step by step. (2024)