

Benign Overfitting in Token Selection of Attention Mechanism

Keitaro Sakamoto, Issei Sato The University of Tokyo

Summary

Analysis of "benign overfitting" in the token selection of attention mechanism under label noise setting.

Benign overfitting: Achieve high generalization while perfectly fitting training data in an over-parameterized model.

- → Overfits training data, but surprisingly, without hurting generalization.
- 1. How do the training dynamics of token selection in attention evolve under label noise?
- 2. Does the obtained solution generalize well?

Model can select one token for each input $\mathbf{X}^{(i)} = (\mathbf{x}_1^{(i)}, \dots, \mathbf{x}_T^{(i)})^ op \in \mathbb{R}^{T imes d}$

Overfits to label noise (Memorizes training labels)

Still generalizes well

Difficulties Specific to Attention

We must handle two competing directions in the same training run.

- Clean samples $\mathcal C$ vs Noisy samples $\mathcal N$ to learn signals
- Signal learning $oldsymbol{\mu}$ vs Memorization $\{oldsymbol{\epsilon}_t\}_{t\in[T]}$ in token selection

$$\boxed{ \textbf{Two-layer NN} } \quad f(\mathbf{x}) = \boldsymbol{\nu}^{\top} \sigma(\mathbf{W}\mathbf{x}) = \sum_{j=1}^{m} \nu_{j} \sigma(\mathbf{w}_{j}^{\top}\mathbf{x}) \text{, where } \mathbf{w} = \begin{pmatrix} \mathbf{w}_{1}^{\top} \\ \vdots \\ \mathbf{w}_{m}^{\top} \end{pmatrix}$$

$$-\frac{\partial \mathcal{L}}{\partial \mathbf{w}_{j}} = \frac{1}{n} \sum_{i=1}^{n} \frac{(-\ell'_{i}(Y^{(i)}f(\mathbf{x}^{(i)})))}{\approx \text{Loss at } (\mathbf{x}^{(i)}, Y^{(i)})} \cdot Y^{(i)} \nu_{j} \cdot \sigma'(\mathbf{w}_{j}^{\top}\mathbf{x}^{(i)}) \mathbf{x}^{(i)}$$

$$= 1 \text{ or } 0 \text{ if ReLU}$$

$$-\frac{\partial \widehat{\mathcal{L}}}{\partial \mathbf{p}} = \frac{1}{n} \sum_{i=1}^{n} \frac{\left(-\ell_{i}'(Y^{(i)}f(\mathbf{X}^{(i)}))\right)}{\left(\sum_{t=1}^{T} \mathbb{S}(\mathbf{X}^{(i)}\mathbf{W}^{\top}\mathbf{p})_{t} \left(\left(Y^{(i)}\boldsymbol{\nu}^{\top}\mathbf{x}_{t}^{(i)}\right) - \sum_{u=1}^{T} \mathbb{S}(\mathbf{X}^{(i)}\mathbf{W}^{\top}\mathbf{p})_{u} \left(Y^{(i)}\boldsymbol{\nu}^{\top}\mathbf{x}_{u}^{(i)}\right)\right)}{\text{This term approaches zero both } \mathbb{S}(\mathbf{X}^{(i)}\mathbf{W}^{\top}\mathbf{p})_{t} \to 1 \text{ (selected)}}$$

- Learning direction depends intricately on softmax values.
- Contribution to learning decreases as more desirable token are selected.

Problem Setting

Training

$$\widehat{\mathcal{L}}(\mathbf{W},\mathbf{p}) = \frac{1}{n} \sum_{i=1}^n \ell\left(Y^{(i)} \cdot f(\mathbf{X}^{(i)})\right), \quad \ell(z) = \log(1 + \exp(-z)) \quad \text{Binary cross-entropy}$$

Gradient descent with a step size $\alpha > 0$.

$$\mathbf{W}(\tau+1) = \mathbf{W}(\tau) - \alpha \nabla_{\mathbf{W}} \widehat{\mathcal{L}}(\mathbf{W}(\tau), \mathbf{p}(\tau)), \ \mathbf{p}(\tau+1) = \mathbf{p}(\tau) - \alpha \nabla_{\mathbf{p}} \widehat{\mathcal{L}}(\mathbf{W}(\tau), \mathbf{p}(\tau))$$

Data

- 1. True label $Y^* \sim \mathrm{Unif}(\{\pm 1\})$, $Y = \begin{cases} Y^* & \text{with probability } 1 \eta \\ -Y^* & \text{with probability } \eta \end{cases}$, \mathcal{C} : Clean examples \mathcal{N} : Noisy examples
- 2. Class signals $m{\mu}_{+1}$ and $m{\mu}_{-1}$, such that $\langle m{\mu}_{+1}, m{\mu}_{-1}
 angle = 0$ and $\|m{\mu}\|_2 = \|m{\mu}_{+1}\|_2 = \|m{\mu}_{-1}\|_2$
- 3. Input $\mathbf{X} = (\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \dots, \mathbf{x}_T)^{\top}$ $\mu_{Y^*} + \epsilon_1 \quad \rho \mu_{-Y^*} + \epsilon_2 \quad \rho \mu_{Y^*} + \epsilon_t \quad \epsilon_t$ $^*
 ho \ll 1$: Small scale parameter representing weak class information

 $\epsilon_t \sim N(0, \sigma_\epsilon^2 I)$ Signal-to-noise ratio $SNR = \|\boldsymbol{\mu}\|_2/(\sigma_{\epsilon}\sqrt{d})$

Noise vectors

Main Result

Theorem (Informal)

Suppose that the norm of the linear head scales as $\|\nu\|_2 = O(1/\|\mu\|_2)$. Under some parameter assumptions (*, see our paper for details), we have

 $au=\Theta\left(rac{1}{lpha\|oldsymbol{
u}\|_2\|oldsymbol{\mu}\|_2^3d\max\{\sigma_w^2,\sigma_n^2\}}
ight)$ such that: $\forall i \in \mathcal{C}, \ f_{\tau}(\mathbf{X}^{(i)}) = Y^{(i)}, \forall j \in \mathcal{N}, \ f_{\tau}(\mathbf{X}^{(j)}) \neq Y^{(j)}, \Pr_{(\mathbf{X}, Y^*) \sim P^*} \left[\operatorname{sign} \left(f_{\tau}(\mathbf{X}) \right) \neq Y^* \right] < \delta.$

1. (Not overfitting) If SNR² = $\omega(n^{-1})$, then with probability at least $1 - \delta$, there exists a time

2. (Benign overfitting) If SNR² = $o(n^{-1})$, then with probability at least $1 - \delta$, there exists a time

$$\tau = \Theta\left(\frac{\exp(n^{-1}\mathrm{SNR}^{-2})}{\alpha n^{-1}\sigma_{\epsilon}^{2}\|\boldsymbol{\nu}\|_{2}\|\boldsymbol{\mu}\|_{2}d^{2}\max\{\sigma_{w}^{2},\sigma_{p}^{2}\}}\right) \text{ such that:} \qquad \begin{array}{l} \text{Generalization after overfitting requires} \\ \exp(n^{-1}\mathrm{SNR}^{-2}) \\ \exp(n^{-1}\mathrm{SNR$$

For noisy data $j \in \mathcal{N}$, the class relevant token $\mathbf{x}_1^{(j)}$ should **NOT** be picked to decrease the training loss.

 \rightarrow Noise memorization suppresses the probability of selecting $\mathbf{x}_1^{(j)}$ to zero (Figure, right). Furthermore, benign overfitting claims that such memorization does not adversely affect generalization.

Experiments

This result validates our theorem.

Additional experiments

- Heat-map experiments when changing SNR (Right figure)
- Real-world experiments when finetuning noisy data (MNIST, CIFAR10, MedMNIST, AG-news, TREC)

