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Generative modeling: Manifold Hypothesis

M
g

Z

X

• X - pixel space
• M - lower-dimensional manifold of images
• Z - latent space
• g : Z → M - generative mapping

Adapted from: Shao, Hang, Abhishek Kumar, and P. Thomas Fletcher. The Riemannian Geometry of
Deep Generative Models. CVPR Workshops, 2018
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Metric and geodesic curve

Length of a curve:

Generative mapping g induces a metric g and defines a curve length in data
space. Geodesic curve is a curve in the minimal length between two points
in data space.
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Deterministic generative models

Geodesic curves in generative models:

In the works (Shao et. al., 2018) (Wang & Ponce, 2021) it was observed that
geodesics are close to the linear interpolation in the latent space of a
variational autoencoder (VAE) and Generative Adversarial Networks (GANs).
This means implicitly learn almost flat geometry.
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Stochastic generative models

The key feature of diffusion models is a stochastic sampling.

g : Z → M ⊂ X - generative mapping is now stochastic and has form of a
conditional probability distribution p(x|t′), t′ ∈ Z.

Previous approaches for metric estimation cannot be applied for stochastic
generation.
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Stochastic generative models

Stochastic generation:

For stochastic generative models natural metric is Fisher information metric.

Fisher metric for a distribution p(x|t) is defined as

gF(t) =
∫

X
p(x|t)∇t log p(x|t)(∇t log p(x|t))Tdx (1)
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How to obtain a metric for a generative model?

We estimate the metric from the samples by training convex MLP.
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Exponential family distributions

We assume that p(x|t) approximates by exponential family

p(x|t) = e〈f(x),t〉−log Z(t), (2)

where the partition function Z(t) is given by

Z(t) =
∫

X
e〈f(x),t〉dx. (3)

For exponential families their Fisher metric is a Hessian of log Z :

gF(t) =
N∑

i,j=1

∂2 log Z(t)
∂ti∂tj

dtidtj = ∇2 log Z(t) (4)
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How to obtain Hessian metric for a generative model?

Theorem 1 (Lobashev et. al., ICML 2025) Let X be a space of data samples
x ∈ X , and S ⊂ Rn be a compact domain with the continuous prior
distribution p(t) supported on S. Suppose the conditional distribution of
data samples given parameter t is an exponential family

p(x|t) = e〈t,f(x)〉−log Z(t), (5)

where
Z(t) =

∫
X
e〈t,f(x)〉dx (6)

converges for all t ∈ S. Let x1, . . . , xN ∼ p(x|t′). Then, as N → ∞ the posterior
distribution satisfies:

lim
N→∞

(p(t|x1, . . . , xN))1/N
a.s.
= e−Dlog Z(t)(t,t

′) (7)

where Dlog Z(t)(t, t′) is the Bregman divergence between exponential family
distributions

Dlog Z(t)(t, t
′) =

= log Z(t) − log Z(t′) − 〈∇t′ log Z(t′), t − t′〉
(8)
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How to obtain Hessian metric for a generative model?
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Hessian geometry of latent diffusion models

The experiments with diffusion are based on StableDiffusion 1.5
(Dreamshaper8) with DDIM scheduler. For our generation we use 50 inference
steps, classifier free guidance scale set to 5. Prompt is chosen as “High
quality picture, 4k, detailed” and negative prompt “blurry, ugly, stock photo”.

To build a 2 dimensional latent space section of the diffusion model we
generate 3 random initial latents z0, z1, z2. We use interpolation between
latent representations:

z = z0 + α(z1 − z0) + β(z2 − z0),

where α and β are uniformly sampled from U[0, 1].
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Geodesic (ours) and linear interpolation between images
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The fractal structure of phase boundary

The fractal structure of phase boundary in the interpolation landscape of
diffusion model. The last plot represents the parameter variations 10−5

between neighboring images that cause the switch between a mountain and
a lion. 13



The fractal structure of phase boundary
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Figure 1: In diffusion models, generation begins from a high-dimensional Gaussian
latent distribution. The reverse ODE process maps this distribution onto disjoint,
lower-dimensional manifolds corresponding to distinct image modes. Such a
transformation—from a unimodal latent space to a multimodal data space with
disjoint supports—may result in a diverging Lyapunov exponent or, equivalently, a
diverging Lipschitz constant in the generative mapping, indicating phase transitions.
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