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Motivation

* Distributed training of large DNN on
commodity devices containing private
datasets.

* Federated Learning (FL) trains a model on

several client datasets without sharing data.

* Modelis trained in parallel on clients and
periodically aggregated at server.

* Fast, but assumes clients have enough
resources to store and train large models.

* Impractical for today’s LLMs and foundation
models.
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Prior State of the Art

* Split Learning (SL): split model between client and server; sequentially process
clients in a round-robin manner

[Vepakomma et. al 2018, Gupta & Raskar 2018]
* Limitation: low speed due to highly sequential processing; high communication load between clients and server

* Split Federated Learning (FSL): two variants of algorithms: 1) SFLv1 trains one
copy of server-side model for each client 2) SFLv2 sequentially updates single
copy of server-side model

[Thapa et. al 2022]
* Limitation: high server memory usage; same communication load as split learning

 FSL with auxiliary models: in SL setup, use local loss functions at client to
approximate server-side model

* [Hanet.al2021, Mu & Shen 2023]

* Limitation: lower accuracy compared to SL; lack of server feedback when training auxiliary models; lack theoretical
convergence guarantees on global model



FSL: Proposed Solution
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Convergence of FSL-SAGE

Theorem: Convergence Rate

Under above assumptions and step-sizes (1, nz) for T' rounds, the iterates in FSL-SAGE satisfy:
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where C' > () and ¢ > 0 are some constants, and &', = Ll T, T x').

« With suitable step size choices (,71;), convergence rate is O(1/+/T) for T rounds

* Lastterm reveals the role on the learnability of the auxiliary model



Experimental Results |

* Accuracyvs. Communication Load
performance of FSL-SAGE with baselines

* Performance on image classification task:
CIFAR-10 (above) and CIFAR-100 (below)

* FSL-SAGE outperforms all baselines in terms
of final accuracy

* Achieves comparable accuracy with = 2 X the
communication load
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FSL: Experimental Results I

* Accuracyvs. heterogeneity in client data

* Heterogeneity measured in terms of a:
Lower a implies higher heterogeneity

* FSL-SAGE is most robust to client data
heterogeneity among all methods
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Experimental Results

* Preliminary results on LLM finetuning use-
case: Test loss vs. communication load
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