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Background: Data scarcity
• Data scarcity challenges AI model training, especially for specialized domains like medicine (e.g., 

pneumonia recognition) and industry (e.g., anomaly detection).
• Low data quality
• Limited data access
• …
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Background: Large models can help ?
• With pre-trained knowledge, large models can generate synthetic data to alleviate data scarcity.

• Using various generative APIs
• Prompt engineering 
• …
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Background: Large models cannot help
• However, large models suffer from specialized domains[1].

• Domain gap between the synthetic and private data
• Personalized requirements
• …
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[1] Johri, Shreya, et al. "An evaluation framework for clinical use of large language models in patient interaction tasks." Nature Medicine (2025): 1-10.



Background: Large models cannot help
• Widely-used approaches in specialized domains for large models:

• Fine-tuning
• Costly for large model training, data scarcity 

• Few-shot in-context learning (ICL)
• Privacy issue, effortful prompt engineering

• Zero-shot ICL + selection
• Costly for large amount data generating, effortful prompt engineering
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Private Evolution (PE)
• PE = few-shot ICL + selection + evolution

• Using private data for scoring the quality of synthetic data to enable selection & evolution
• Like AlphaEvolve[1], FunSearch[2], etc.
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[1] Novikov, Alexander, et al. “AlphaEvolve: A Gemini-Powered Coding Agent for Designing Advanced Algorithms.” Google DeepMind, 14 May 2025.
[2] Romera-Paredes, Bernardino, et al. "Mathematical discoveries from program search with large language models." Nature 625.7995 (2024): 468-475.



Private Evolution (PE)
• PE = few-shot ICL + selection + evolution

• The key is the selector, it is the engine

Page 7

Selector



Private Evolution’s shortcomings
• Selector’s voting mechanism: let private data to vote on the quality of synthetic data

• More votes, more informative
• Suitable with massive private data
• E.g., 1000 private data points
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Private Evolution’s shortcomings
• Selector’s Differential Privacy (DP): add proper Gaussian noise to the votes
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Private Evolution’s shortcomings
• Selector’s DP: add proper Gaussian noise to the votes

• More votes, less influenced
• E.g., 1000 private data points
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Private Evolution’s shortcomings
• Selector’s voting mechanism can only produce a few votes given few-shot private data

• Less votes, less informative
• E.g., 10 private data points
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Private Evolution’s shortcomings
• Selector’s voting mechanism can only produce a few votes given few-shot private data

• Less votes, more influenced
• Gaussian mechanism is sensitive to the private data amount
• E.g., 10 private data points
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Our Private Contrastive Evolution (PCEvolve)
• Abandon PE’s voting mechanism and Gaussian noise 
• Adapt the Exponential Mechanism (EM) to our scenario for DP

• Agnostic to private data amount
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Our Private Contrastive Evolution (PCEvolve)
• Devise a contrastive filter to exploit inter-class relationships inside few-shot private data
• Select prototypical synthetic data for feedback
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Our Private Contrastive Evolution (PCEvolve)
• The difference between PE and our PCEvolve in the framework
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Overview of PCEvolve
• Different colors denote distinct data classes
• “Agg”: class center aggregation | “Exp”: Exponential Mechanism (EM)  
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Overview of PCEvolve
• 𝑔𝑔: contrastive filter (introduced later)
• ℎ: similarity calibrator (introduced later)
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Step-by-step
• In each evolving iteration, we have the synthetic dataset (with indices) and private dataset
• Selector should output the prototypical dataset
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Step-by-step (1) Agg
• Aggregate few-shot private data to obtain the private center set 
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Step-by-step (2) contrastive filter 𝒈𝒈
• Select synthetic data that can be correctly classified into their corresponding classes using       as 

class identifiers to exploit the inter-class information
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Step-by-step (3) similarity calibrator 𝒉𝒉
• Due to the large domain gap, optimizing only discriminability using 𝑔𝑔 won't narrow the gap
• We need to narrow down the similarity between synthetic and private data
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Step-by-step (3) similarity calibrator 𝒉𝒉
• Thus, we devise ℎ as

• The range of ℓ2 is [0, +∞), so ℎ ∈ [0,1], making 𝑢𝑢 = ℎ ∘ 𝑔𝑔 ∈ [0,1] and the sensitivity Δ𝑢𝑢 = 1
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Step-by-step (3) similarity calibrator 𝒉𝒉
• In fact, ℓ2 rarely spans the full range of [0, +∞), but still we have 𝑢𝑢 = ℎ ∘ 𝑔𝑔 ∈ [0,1] and Δ𝑢𝑢 = 1

• A waste of range ---> a waste of privacy budget for DP

• To fully use the range of ℎ at each time, we calibrate the similarity by
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Step-by-step (4) Applying 
• Given a well-defined 𝑢𝑢, we can apply EM       , and
• The best candidate with the highest 𝑢𝑢 value has the greatest probability of being selected
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Step-by-step (4) Applying 
• Given a well-defined 𝑢𝑢, we can apply EM       , and
• The best candidate with the highest ℎ value has the greatest probability of being selected
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Step-by-step (4) Applying 
• Given a well-defined 𝑢𝑢, we can apply EM       , and
• The best candidate with the highest ℎ value has the greatest probability of being selected
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PCEvolve is 𝜖𝜖∗-DP
• Theorem 4.1.  Algorithm 1 PCEvolve satisfied 𝜖𝜖∗-DP.
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Comprehensive Experiments
• Representative specialized domains: medicine, industry
• Various Image generation APIs: online, offline

• Various downstream models: ResNets, Inception, ViT
• Scaling law of synthetic data
• …
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Representative specialized domains
• COVIDx: chest X-ray images for COVID-19
• Came17: tumor tissue patches from breast cancer metastases

• KVASIR-f: endoscopic images for gastrointestinal abnormal findings detection
• MVAD-l: leather surface anomaly detection
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Top-1 accuracy (%) on four specialized datasets



Various Image generation APIs
• SD: Stable Diffusion API
• SD+IPA: SD API with the IP-Adapter 

• OJ: OpenJourney API
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Top-1 accuracy (%) on COVIDx and KVASIR-f using SD+IPA and OJ (online) APIs



Various downstream models
• Our PCEvolve consistently outperforms across all types of downstream models.
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Top-1 accuracy of various downstream models on COVIDx. 
“Private” represents an additional private baseline, which 

directly trains downstream models on few-shot private data.



Scaling law of synthetic data
• The best 𝑁𝑁 is between 100 and 150
• Increasing the amount of synthetic data introduces more noise from the API
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Top-1 accuracy of ResNet-18 on COVIDx with varying synthetic 
data shots per class per iteration.



Synthetic images

Page 33

Generated leather surface images w.r.t. MVAD-l for industry anomaly detection. The three 
rows show normal images, cut defects, and droplet defects. “Initial” denotes the initial 
synthetic images in PE and PCEvolve. “Private” denotes the real images from MVAD-l.



Feel free to contact me!

Thanks!

Home page: https://github.com/TsingZ0

Paper with code: https://github.com/TsingZ0/PCEvolve

https://github.com/TsingZ0/DBE
https://github.com/TsingZ0/PCEvolve
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