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...

Domain

Task Prompts
Select the most important motif...
Choose a pair of motifs...
Select a motif-motif interaction...

Description Prompts
Describe these motifs...
Describe this motif-motif interaction...

Utility Prompts
Narrativize this chain of events...
Extract the answer...
Summarize the reasoning...

0

 Motif Descr.
1. an ester
functional group
2. ...

 Motif 0 because: 
• Highlights the ester
functional group 
• Directly fits into profile
for acrylates.... 
• Contributes significantly
to reactivity and
polymerization behavior...

 Algorithm 

 Prompt 

Repeat K times

 Design Story 2
To design this acrylates molecule: 
• We start with an ester functional group 
• Next we combined it with an alkane
chain with three carbons because ...

Which story is better?

 Tournament 

RHS

1 O 1 CC
N

LHS

N

1

.....

Specialized Grammars

Grammar

.....

Generated Samples

                ❝ • Tasks ranged from simple identification tasks to                   
                  complex evaluations of interactions and significance...
                   • Agent generally performed well, delivering accurate,           
                    detailed, and logical responses...
• For simple prompts... the agent excelled due to clear instructions...
• For mid-level tasks... did well but occasionally lacked nuance...
• In high-complexity tasks... demonstrated strong reasoning but
sometimes missed alternative perspectives...
• Limitations emerged around experiential knowledge or alternative
interpretations involving expert intuition ❞ 
 - Chemist, full quote in App. C6

 Design Story 1
To design this acrylates molecule: 
• We start with an ester functional group 
• Next we combined it with an ether
group because ...

              Chemist Case     
              Studies in App. C

   
  I chose Motif 0 because 
  of its reactivity and poly- 

merization in acrylates

Triangulate
Clique Graph

Merge Clique
Nodes

Spanning Tree
Edge Selection

Root Motif
Selection

Analyze an acrylate's substructures....
Pick the most important motif...

Explain your reasoning.

The pair that should be combined
is 0 and 1. Combining these two

motifs will form the acrylate group,
incorporating the essential double

bond and ester features.

     Motif 0 highlights the ester
functional group [-C(=O)O-], which

directly fits into the essential functional
groups of an acrylate. The ester group
contributes significantly to the reactivity

and polymerization behavior of
acrylates.... Therefore, Motif 0 is the

most pivotal....

 Interaction 2 involves the interaction
between two branched alkyl chains with
central carbons attached to three other

carbon atoms. Branched alkyl chains exhibit
minor electronic effects.... Therefore,

Interaction 2 is deemed least important.

Chain of Thought Narrative

Extract Base
Cliques

I will highlight for you some of the distinctive
fragments of an acrylate.... Your task is to construct

the primary functional groups of the molecule.
Output a single pair of numbers if you think those
two fragments should be combined, and a brief

explanation why.

Analyze pairwise motif interactions
within an acrylate.... Tell me which
interaction is MOST important and

which is LEAST important.... Explain
your reasoning.

Fig. 3
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Table 3. Snapshot of PTC Expert Case Study (App. D.1). Full case studies for other datasets in App. D.
Prompt Response Expert Evaluation

...I want you to explain, concisely, what each num-
bered motif is ...

.. **Motif 8:** Di-substituted carbon chain with a
nitrile group (N=C) on one end and another nitrile
(N⌘C) in the middle. **Motif 9:** ...

... Each motif was correctly categorized with its chem-
ical identity and described in terms of its structure
and connectivity, reflecting a solid understanding of
organic chemistry principles ...

...I want you to tell
me if any two of them
should be combined to-
gether to form a more
meaningful substruc-
ture ...

**Pair: 8 and 9** **Explanation:** ... Combining
these two fragments could provide a more comprehen-
sive understanding of the arrangement and connectiv-
ity of nitrile groups along the carbon chain, which is
critical in analyzing the structure and reactivity of the
molecule ...

Medium, PTC molecules are more complex, so it re-
quires considering combinations of more than one pair
of motifs ...

...I want you to explain, concisely, what each numbered
motif is ...

... *Motif 8**: Butanedinitrile - A nitrile with a CN
group at each end of a butane backbone. ... ...

... ... ...

... I want you to pick
only ONE of these as
the root motif most es-
sential to its chemical
profile ...

... From the motifs listed, **Motif 17 (Chloroacety-
lene)** and **Motif 18 (1,1 Dichloroethane)** con-
tain halide groups ... Given the need to select one
motif, **Motif 18** (1,1 Dichloroethane) stands out
slightly more due to the presence of two chlorine
atoms ...

... GPT choose Motif 18 as the most essential
root motif, which is correct. This is because 1,1
Dichloroethane obtain higher significancy due to the
presence of two chlorine atoms ...

5. Ablations
5.1. Heuristic vs MMFM Modules

Table 4. For each module, we swap MMFM for a heuristic.
Method Novelty Div. RS Memb.

FMG Avg 99.96+-0.01 99.86 99.94+-0.00 0.79+-0.01 0.83+-0.00 0.81+-0.02 44.3+-3.4 87.4+-1.5 91.9+-3.8 60.14+-13.63 35.48+-4.02 28.30+-13.25
FMG Union 99.96 99.87 99.94 0.81 0.83 0.84 78.7 97.2 98.8 64.42 37.88 22.07
FMG (-merge) Avg 99.95+-0.00 99.88+-0.00 99.94+-0.00 0.74+-0.01 0.83+-0.00 0.85+-0.00 32.6+-5.7 91.0+-2.0 97.4+-0.8 95.75+-4.16 16.61+-0.78 15.48+-1.11
FMG (-merge) Union 99.95 99.88 99.94 0.76 0.83 0.85 39.7 90.3 96.4 93.74 16.40 14.44
FMG (-edge) Avg 99.96 99.87 99.95 0.76 0.82 0.77 57.9 93.5 99.9 45.81 37.44 38.56
FMG (-edge) Union 99.95 99.87 99.95 0.81 0.83 0.84 66.8 92.7 98.4 58.57 33.83 16.23
FMG (-root) Avg 99.96+-0.01 99.88+-0.00 99.94+-0.00 0.79+-0.03 0.85+-0.00 0.83+-0.02 49.1+-7.0 89.5+-2.6 91.9+-10.9 52.17+-12.13 22.90+-2.53 14.23+-6.39
FMG (-root) Union 99.97 99.86 99.94 0.82 0.85 0.86 54.9 87.0 96.2 47.01 22.18 14.84

Setup. We separately ablate each MMFM-assisted module
to investigate how crucial each module is for FMG. We
ablate the merge module by directly passing G(T1)

C
to Step

3.3.4, the spanning tree module by the maximal spanning
tree (MST) heuristic (Tarjan & Yannakakis, 1984), and the
root module by picking a root clique at random. Since
ablating an LLM module also breaks the overall design
story, we only use the baseline “1-k” FMG (FMG Union,
which combines all rules across K seeds). We set K = 5
and also report the average performance across 5 runs.

Results. In Table 4, we see ablating any MMFM com-
ponent has negative implications for the results, albeit in
different ways and differently across datasets. Ablating
Merge discourages the class-defining motifs for acrylates
and chain extenders to be formed during decomposition,
meaning they are less likely captured in the rules (with an
exception for isocyanates, whose defining motif (N=C=O)
has only 2 bonds and must already be in a clique). For
isocyanates, RS drops significantly: it’s known an amine
(R-NH2) reacts with phosgene (COCl2) to produce the iso-

cyanate, so without MMFM’s knowledge, the intermediate
may not be formed, producing rules less amenable to syn-
thetic considerations. Ablating MMFM-guided spanning
tree construction has milder consequences. Diversity, RS,
and membership are only slightly worse. The MST heuristic
is well-motivated, but its rule-based selection is less adapt-
able to domain-specific constraints like chemical reactivity,
since it models interaction strength solely on the basis of
neighborhood overlap. Meanwhile, an MMFM is more flex-
ible to capture these constraints, selectively breaking the
heuristics when context necessitates it.

5.2. Ensemble Over Seeds

Setup. We investigate the effect of the FMG learning in
a more controlled setting. We set K = 10 and study the
performance of Top k FMG as k reaches K. As a baseline,
we compare with the “1-k” FMG, which is the HRG inferred
by

S
k�1
r=0 P (GCr ). The results and analysis are in App. C.

6. Conclusion
We present a MMFM-guided grammar induction framework
for molecular generation. FMG demonstrates expert-like
reasoning by combining latent chemistry knowledge, im-
age comprehension, and in-context abilities using innova-
tive prompting and feedback mechanisms. Our method is
interpretable, user-friendly, allows for customization, and
foundational for future molecular design workflows.

8

GPT-4o can play a core role within an algorithm to provide interpretability and accuracy in decomposing molecules.

( ↑ ) Example run. GPT-4o reasons and chooses between presented 
options. Experts validate the traces.
(→) Tallying turn-by-turn expert agreement of prompt-response pairs

LLM accelerates molecular discovery by acting as experts in decomposing molecules, designing design languages.

LLM-as-a-judge chooses which decomp. was better. 
Expert agrees with LLM on 71% of cases. Using 
LLM judge, we host Swiss-style tournament to rank 

decomps. The top k tournament-winning decomps craft 
a generative molecular grammar.
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C. Additional Discussion of Evaluation Criteria
We provide additional points of consideration when interpreting the results in Sec. 4.

(a) Spider plot of pareto-efficient methods in Table 1. (b) Spider plot of pareto-efficient methods in Table 2.

Figure 5. Visualization of results across all 5 evaluation metrics.

Holistic Assessment. Evaluating generative models is challenging and requires a holistic consideration of different,
competing metrics. A method which scores high on one metric (e.g. synthesizability) but does catastrophically bad on
another one (e.g. uniqueness) is not practical. To facilitate a more holistic validation, we provide spider plots for Tables
1 & 2 in Figures 5a & 5b. On small datasets, no method other than FMG reaches near 100% unique, valid & memb.
simultaneously. For instance, GPT4 (ICL) appears to score higher on diversity & RS, but struggles to generate valid and
unique samples. On real-world datasets, FMG generates the most unique, novel, valid & diverse samples, and methods that
score higher on RS and Memb. have serious shortcomings.

Ranking Criteria. In Tab. 1, the two T5 (I) methods are excluded from ranking (as mentioned in the caption) due to
the difficulty in obtaining sufficient valid, unique samples, meaning their seemingly higher RS/Memb. scores don’t have
sufficient sample support. The same is written in the caption of Tab. 2 for the VAE (T) methods. When simple fixes don’t
work (e.g., tuning sampling temperature), we make a note of it in the caption and exclude it from the rankings.

Robustness. We don’t report error bars because robustness across samples (the purpose of error bars) can simply be
absorbed into the number of samples we generate. Generating a sufficiently large sample size can ensure greater statistical
significance of the results, especially when 4 of our metrics (valid, novel, RS, memb.) are defined at the individual sample
level and the other 2 metrics (diversity, uniqueness) evaluate coverage. For small molecules (Tab. 1), we generate 10000
samples; for large molecules (Tab. 2), we generate 1000 samples due to inference being more expensive for some of the
large model baselines. In both cases, we see a fixed sample size of 1000 or 10000 already pushes multiple baselines to the
limits, so generating more than what they’re capable of may further complicate a holistic assessment of the methods.

D. Expert Evaluation of LLM Judge
D.1. Setup

For a given molecule, the expert compares two discrepant decompositions on the basis of soundness of reasoning. We then
prompt our LLM judge with chain-of-thought reasoning (Wei et al., 2022). We ask the LLM to summarize the key points
and decide which decomp. is better, solely based on the explanations. For Chain Extenders, the expert compared all 11
molecules and provided a rationale for their decision for each molecule. For the 4 other datasets, we randomly select 5
molecules each, and ask the expert to directly provide the decision without writing a rationale due to time constraints. Each

16
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pair was evaluated twice with flipped order to eliminate bias. We run the LLM judge 3 times per molecule, for a total of 15
data points per dataset.

D.2. Example

Expert
“Analysis A demonstrates a solid understanding of motifs like amide, urea, imidazole, and carbonyl groups—key to
chain extenders. It justifies motif 1 as the root based on its role in peptide bond formation. Analysis B neglects
important groups and lacks a strong rationale for selecting motif 0 as root.”

LLM Judge
“‘
Defining Motifs:

Analysis A better identifies functional groups like amides/carbonyls that define chain extender properties. It
correctly selects motif 1 for its role in polymer backbones.

Functional Group Explanation:

Analysis A explains the contributions of groups to mechanical and processing properties. Analysis B simplifies the
motifs and lacks depth in chemical reasoning.

Decision:

Analysis A is favored for better understanding and detailed explanation of groups defining chain extenders.
”’

D.3. Results

For Chain Extenders, the LLM judge agrees with the expert 10, 9, 8 times out of 11 when the better decomposition is shown
last, and 8, 8, 7 times when it is shown first. For the 4 other datasets, we see the results in Table 7. The total comparisons the
LLM judge agrees with the expert is 77/108 = 71%. With the null hypothesis being every comparison is an independent
coin flip, this result yields a p-value of 1.1e� 5, which is statistically significant.

D.4. Analysis

The LLM judge can identify better decompositions, validating our judging protocol and the premise behind our self-
improving feedback loop described in Sec. 3.5. These results reinforce the usefulness of FMG’s interpretability – its outputs
can support downstream decision-making and design critique, even enabling the LLM to act as a self-checking agent in an
expert-in-the-loop pipeline.

Table 7. We tally LLM judge decisions against the human decision (Gold) across 3 repeated calls per molecule. For 6 molecules (columns
with answer in [brackets]), the expert found both designs equally reasonable, so we exclude those from the total.

Isocyanates Acrylates HOPV PTC Total

Gold A B A B A B A B
1 BAAB[B] BBBB[B] AABAB BBABB BBAAA BBBBA [B]BABA [A]BBBA 25/36
2 BAAB[B] BBBA[A] AAAAA BBBBA BBABA BBBBA [B]BABA [B]BBAB 25/36
3 BAAB[B] ABBA[B] AAAAB BBBBB BAAAB BBBBB [B]BABA [A]ABBB 26/36

Score 6/12 9/12 12/15 13/15 9/15 13/15 6/12 9/12 77/108 = 71%

17
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H.6. Quantitative Evaluation of Case Studies

Table 9. Tallying the turn-by-turn expert feedback across all case studies in App. H.1-H.5.

Dataset Easy Medium Hard

Small Dataset Correct 6 3 0
Partial 0 1 0

Real-World Dataset Correct 5 2 2
Partial 0 1 0

We tally all turn-by-turn comments by the expert and categorize each MMFM response as either correct, partially correct, or
wrong. In Table 9, we see there were no instances where the expert thought GPT4’s explanation was flat out wrong. In all
but two instances, the expert completely agrees with GPT4’s explanation.

H.7. Concluding Thoughts by Expert

The tasks ranged from simple identification tasks to more complex evaluations of motif interactions and significance. The
agent generally performed well, delivering accurate, detailed, and logical responses. Its performance varied depending on
the prompt’s complexity and the nuanced requirements of the chemistry domain.

For simple prompts, requiring basic identification or description of motifs, the agent excelled due to clear instructions,
providing precise answers aligned with chemical reasoning and minimal errors. For mid-level tasks, such as combining
functional groups or selecting significant motifs (e.g., case studies H.5, H.1), the agent performed well but occasionally
lacked nuance in addressing chemical subtleties. These tasks demanded more empirical knowledge, such as understanding
toxicity or stability, which increased their complexity. In high-complexity tasks, like evaluating interactions or reactivity
(e.g., case study H.2), the agent demonstrated strong reasoning but sometimes missed broader implications or alternative
perspectives due to limited empirical insights.

The agent consistently delivered accurate and structured answers and adhered to task requirements. However, limitations
emerged in tasks needing experiential knowledge or where multiple valid interpretations existed, as it prioritized one
perspective without exploring alternatives unless prompted. Overall, the agent performs exceptionally well in structured
chemical analysis, offering clear and precise explanations, but requires refinement for tasks involving deeper interpretative
depth or expert intuition.

52
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| · |); T is a set of terminal hyperedge labels; S 2 N is the
starting non-terminal hyperedge with label 0 := |S|; P is
a set of production rules, each consisting of A 2 N (LHS)
and a hypergraph with labeled hyperedges and |A| external
nodes (RHS).

We adopt an automatic way to convert a clique tree into
an HRG by interpreting the clique tree as a parse tree
(Aguinaga et al., 2018), where each intermediate node V⌘

becomes the RHS of a production rule and its immediate
parent and/or children are used to compute its non-terminal
hyperedges and external nodes, as depicted in Fig. 2. The
common bonds between V⌘ and its parent become num-
bered external nodes (black circles). These external nodes
are used to “anchor” the replacement, as they also appear
in the RHS. For each child of V⌘ (if any), a non-terminal
hyperedge (circles labeled N) is added and connected to the
common bonds (blue).

O
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C 1 C
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C

1

O
2

N

S

C O

1

C 1 C

2

C

1

O
2

N

C1C

1 O 1 CC
N

N 1

Figure 2. Example of conversion from clique tree to HRG pro-
duction rules; (Left) Each node of the clique tree contains a sub-
structure (red), with edges corresponding to shared bonds between
substructures; (Right-top) Rule extracted from second clique of the
tree, with a non-terminal hyperedge for the LHS and the clique’s
substructure being the RHS; (Right-bottom) example of applying
the rule, dashed connections are corresponding bonds and atoms

3.2. Role of MMFM

For inducing a desirable grammar for molecular genera-
tion, a combination of hard and soft constraints must be in
place. The hard constraints ensure soundness of the tree
decomposition, while soft constraints seek the “optimal”
decomposition among all valid decompositions, that best
captures the specific characteristics of the data, with the
gold standard being a domain expert. The essence of our ap-
proach is to automatically handle the hard constraints within
a sound algorithmic framework, then leave the exercises
of judgment to an MMFM. To modularize the MMFM’s
involvement, we standardize all tasks to be the task of se-
lecting among a finite set of choices. All MMFM tasks
in Section 3.3 can be captured by only two fundamental
selections:

Single Selection. Given a set S ✓ V (t)
C

, the MMFM is

asked to select s 2 S or refrain from selection. That is, to
select a clique out of all cliques in the current GC .
Pair Selection. Given a subset of pairs, P ✓ V (t)

C
⇥ V (t)

C
,

the MMFM is asked to select p 2 P or refrain from selec-
tion. That is, to select a pair of bond cliques out of a given
set of feasible pairs.

When the context is clear, we denote the raw responses
F1(S(t)) and F2(P (t)). We use answer extraction utility
prompts to obtain the answers. These selections map to
triangulation, merging, cycle removal, and root selection
operations on G(t)

C
. We can execute the full tree decomposi-

tion of a molecular clique graph, G(0)
C
) G(T )

C
, using only

these operations, driven by MMFM’s selections. We will
describe each operation G(t)

C
! G(t+1)

C
, in detail, in the

context of constructing the clique tree in Section 3.3.

3.3. MMFM Guided Tree Decomposition

See Figure 1 for an illustration of the steps described in this
subsection.

3.3.1. CONSTRUCTION OF CLIQUE GRAPH

We initialize G(0)
H

to the graph of the base molecular hy-
pergraph. We automatically extract the maximal cliques of
G(0)

H
, thus constructing G(0)

C
 CLIQUE(G(0)

H
).

3.3.2. TRIANGULATE CLIQUE GRAPH

We now triangulate G(0)
H

to ensure the soundness of the
junction tree algorithm. We adopt a chordality testing algo-
rithm (Tarjan & Yannakakis, 1984) that iteratively detects
pairs (u, v) 2 VH ⇥ VH that would form chordless cycles
of length > 3 if left unaddressed. At each iteration t in
which the algorithm returns a pair (u, v) connected by a
chord, we set P (t) ! {(c1, c2) | c1 2 Vu \ c2 2 Vv}.
Let c⇤1, c⇤2  F2(P (t)). We then merge c⇤1, c⇤2 by
adding all edges, E(t+1)

H
 E(t)

H
[ Vc⇤1 ⇥ Vc⇤2 . We update

G(t+1)
C

 CLIQUE(G(t+1)
H

). Let G(T1)
C

denote the clique
graph once GH is triangulated. We proceed to the next
phase.

3.3.3. MERGE CLIQUE NODES

We now would like to give the MMFM the option to further
merge cliques that form more cohesive motifs, e.g. func-
tional groups, in the context of the base molecule. Starting
with t = T1, we set P (t)  E(t)

C
. If F2(P (t)) does not

return, we terminate and proceed to the next phase. Oth-
erwise, at each iteration, we let c⇤1, c⇤2  F2(P (t)). We
merge c⇤1, c⇤2 following the same operation steps as in Step
2. Let G(T2)

C
denote the clique graph upon termination of

this phase.

4
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G. Results on a Small Subset of MOSES

Table 8. We trained FMG on a 1k subset (0.05%) of the refined ZINC dataset used by the MOSES benchmark (Polykovskiy et al., 2020).
We generated 30k samples and computed standard -TestSF metrics using the released splits. Baseline numbers are copied from the
MOSES leaderboard. IntDiv2 is omitted due to redundancy with IntDiv.
Model Valid(↑) Unique@1k(↑) Unique@10k(↑) FCD-TestSF(↓) SNN-TestSF(↑) Scaf-TestSF(↑) IntDiv(↑) Novelty(↑)

Train 1.00 1.00 1.00 0.48 0.59 0.00 0.86 1.00
HMM 0.08±0.03 0.62±0.12 0.57±0.14 25.43±2.56 0.38±0.01 0.05±0.02 0.85±0.04 1.00±0.00
NGram 0.24±0.00 0.97±0.01 0.92±0.00 6.23±0.10 0.50±0.00 0.10±0.01 0.87±0.00 0.97±0.00
Combinatorial 1.00±0.00 1.00±0.00 0.99±0.00 4.51±0.03 0.44±0.00 0.09±0.00 0.87±0.00 0.99±0.00
CharRNN 0.97±0.03 1.00±0.00 1.00±0.00 0.52±0.04 0.56±0.01 0.11±0.01 0.86±0.00 0.84±0.05
AAE 0.94±0.03 1.00±0.00 1.00±0.00 1.06±0.24 0.57±0.00 0.08±0.01 0.86±0.00 0.79±0.03
VAE 0.98±0.00 1.00±0.00 1.00±0.00 0.57±0.03 0.58±0.00 0.06±0.01 0.86±0.00 0.69±0.01
JTN-VAE 1.00±0.00 1.00±0.00 1.00±0.00 0.94±0.05 0.52±0.01 0.10±0.01 0.86±0.00 0.91±0.01
LatentGAN 0.90±0.00 1.00±0.00 1.00±0.00 0.83±0.01 0.51±0.00 0.11±0.01 0.86±0.00 0.95±0.00
FMG (0.05%) 1.00±0.00 1.00±0.00 1.00±0.00 26.30±0.41 0.29±0.00 0.12±0.00 0.90±0.00 1.00±0.00

Setup. The sole purpose of this study is completeness. We want to understand FMG’s behavior on the popular MOSES
benchmark used for large-scale representation learning. We trained FMG on three 1k subsets (just 0.05%) of the 1.9 million
molecules in the refined ZINC dataset used by MOSES (Polykovskiy et al., 2020). This reflects an extremely data-scarce
setting, so direct comparisons should not be made; we only include the leaderboard for broader context.

Results. We can see from Table 8 that FMG excels on all five unconditional generation metrics reported in our main paper.
That said, we acknowledge its distributional match is very weak, as expected from a model trained on only 0.05% of the
data. However, its high validity, novelty, diversity, and uniqueness demonstrate FMG’s potential as a backbone model for
further optimization (as done by Guo et al. (2022b)).

Discussion. We want to reiterate the pressing issues in real-world molecular discovery that FMG was designed to solve. We
believe there lies a critical gap between large-scale representation learning benchmarks and real-world molecular design
settings. Real-world settings often come with only a handful of training examples, because chemical classes feature more
specific criteria and there are fewer experts to validate the data. Our main results in Tables 1 & 2 demonstrate FMG
outperforming methods which are state-of-the-art on large-scale benchmarks. We see their performances drop significantly
due to failing constraints like synthesizability and class membership. Maintaining diversity also becomes more challenging
with less data. When tackling domain-specific settings, e.g. synthetically accessible chain extenders with amine groups,
expert knowledge plays a critical role – but integrating it via annotations traditionally required costly manual labor (Sun
et al., 2024). FMG seeks to automate this labor with MMFMs, constructing rigorous hierarchical languages that capture
explicit/implicit constraints through step-by-step algorithmic reasoning. The result is an interpretable, knowledge-driven
workflow that excels at step-by-step reasoning for domain-specific molecular design.

H. Case Studies, Expert Analyses, and Design Story
In the Appendix, we do turn-by-turn walkthroughs of representative molecules from every dataset. We show logs of every
task-related (prompt, response) pair used in our algorithm. We invite a real chemist to comment on the algorithm’s logs for
each dataset and comment on a) the difficulty of the prompt and b) GPT’s answers. We preface each dataset (subsection)
with a brief overview of the domain and rationale for choosing the specific molecule. For the interested reader, we also
include a sample design story in Section H.2.1 used in learning the FMG. As the unrefined stories are heavy in jargon and
quite elaborative, we only include one example. We choose a HOPV molecule as they feature the richest stories. We include
the full text under HOPV’s Section H.2.

In Section H.7, we leave with concluding remarks on the overall performance of GPT-4o, highlighting LLM agents’ strong
performance in substructure extraction and limits in harder tasks requiring expert intuition.

H.1. Case Study: Predictive Toxicology Challenge (PTC)

First, we establish some formatting conventions that we use for PTC and HOPV:

• We log the task prompt, the corresponding response and the expert’s comments for each call to GPT-4o, subdivided by
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used by (Guo et al., 2022b) curated from literature, as well
as two real-world datasets from the photovoltaic and toxi-
cology domains used by (Sun et al., 2024).

Table 1. Results on Small Datasets Isocyanates (11 examples),
Acrylates (32) and Chain Extenders (11). Best rounded result(s)
for each metric bolded. (T): Training from scratch; (FT): Fine-
tuning, (I): Inference, using posterior interpolation. Since T5 (I)
methods struggle to generate sufficient valid and unique samples,
we exclude them from ranking.
Method Valid (Avg.) Unique Div. RS Memb.

Train Data 100% 100% 100% 100% 0.61 0.67 0.80 100% 100% 100% 100% 100% 100%

JT-VAE (T) 100% 5.8% 0.5% 2.3% 0.72 0.29 0.62 5.5% 4.9% 2.2% 66.5% 48.64% 79.6%
Hier-VAE (T) 100% 99.6% 99.7% 99.8% 0.83 0.83 0.83 1.85% 3.04% 2.69% 0.05% 0.82% 43.6%
MHG (T) 100% 75.9% 86.8% 87.4% 0.88 0.89 0.90 2.97% 36.8% 50.6% 12.1% 0.93% 41.2%
MoLeR (FT) 100% 87.1% 40.7% 100% 0.86 0.80 0.91 69.2% 97.7% 70.7% 77.3% 72.2% 97.3%
MoLeR (I) 100% 65.7% 45.4% 51.1% 0.90 0.90 0.90 61.3% 76.2% 92.3% 0.08% 32.0% 95.5%
STONED 100% 100% 99.8% 99.8% 0.85 0.84 0.93 5.63% 11.2% 6.78% 79.8% 47.9% 61.0%
DEG 100% 100% 100% 100% 0.86 0.86 0.93 27.2% 43.9% 67.5% 96.3% 69.6% 93.5%
GPT4 (ICL) 91% 73.0% 35.1% 63.5% 0.86 0.78 0.87 84.4% 95.0% 98.0% 93.7% 99.7% 99.5%
MolT5 (I) 76% 0.9% 0.3% 7.1% 0.09 0.21 0.75 98.1% 99.6% 48.5% 99.8% 100% 100%
Text+Chem T5 (I) 42% 26.2% 46.4% 49.8% 0.55 0.71 0.80 87.6% 58.3% 43.9% 100% 100% 100%
FMG 100% 100% 100% 100% 0.73 0.46 0.85 61.7% 93.0% 99.1% 99.6% 100% 99.8%

Results on Small Datasets. We first observe in Tables 1 and
2 that VAE methods struggle to generate unique molecules,
suggesting they collapse in this extreme setting, consis-
tent with findings by (Guo et al., 2022b; Sun et al., 2024).
Hier-VAE fares better, as it incorporates inductive bias of
larger substructures, but this comes at the expense of RS
and Memb., suggesting an undesirable shift in distribution.

Meanwhile, the CLMs struggle with task comprehension,
sometimes mixing natural language with SMILES, or vio-
lating SMILES syntax, e.g. forgetting to close parentheses.
The few valid examples are often repetitive or similar (as
low as <1% uniqueness and <0.6 Div.), despite efforts to
find balanced decoding strategies like varying beam width
or adjusting temperature. To their credit, the few valid and
unique examples achieve high RS and Memb., suggesting
that the LMs may have memorized a few relevant examples
in the domain but failed to generalize.

The grammar-based methods do better on validity and cover-
age, but struggle across RS and Memb.. Despite optimizing
for RS and Div., DEG still falls short of FMG. This indicates
that these methods can learn the syntax of the underlying
language, but not its semantics like synthesizability or mem-
bership criteria, signs of expert-level understanding. FMG’s
high RS scores are hence impressive considering that we
only prompted GPT to “highlight the primary functional
groups of the molecule”. FMG also achieves nearly 100%
class membership in Table 1. In fact, ICL also achieves high
RS and Memb., suggesting MMFMs are sufficiently knowl-
edgeable about these niche chemical classes that it can to
some extent learn the molecular generation task in-context.
However, ICL has similar struggles as CLMs in generating
valid and unique examples. By combining the semantic com-
prehension of ICL with our formal framework, we implicitly
capture the knowledge into the selections while ensuring
validity and robust performance.

However, FMG still leaves some to be desired across cov-
erage. Our investigation reveals the learning procedure is
inclined towards forming cliques representing more com-
plex substructures which are characteristic of the chemical
class or known to be synthetically accessible. The applica-
bility of a rule decreases as the RHS becomes more complex,
and so the grammar’s coverage decreases. We suspect the
low diversity to be due to this phenomenon occurring in
the extreme setting of having ⇡ 30 or less samples, as that
creates fewer rules which are less applicable.

Table 2. Results on Real-World Datasets HOPV (316 examples)
and PTC (348). Same protocol as Table 1. Since VAE (T) methods
struggle to generate sufficient unique samples, we exclude them
from ranking.
Method Valid (Avg.) Unique Novelty Div. RS Memb.

Train Data 100% 100% 100% N/A N/A 0.86 0.94 51% 87% 100% 30%

JT-VAE (T) 100% 11% 8% 100% 80% 0.77 0.83 99% 96% 84% 27%
Hier-VAE (T) 100% 43% 20% 96% 85% 0.87 0.91 79% 92% 76% 25%
Hier-VAE +expert (T) 100% 29% 28% 92% 75% 0.86 0.93 84% 90% 82% 17%

MoLeR (FT) 100% 100% 99% 100% 99% 0.90 0.92 42% 71% 60% 30%
MoLeR (I) 100% 100% 94% 100% 97% 0.90 0.92 25% 79% 74% 45%
DEG 100% 98% 88% 99% 87% 0.93 0.95 19% 38% 46% 27%
RW (expert) 100% 100% 100% 100% 100% 0.89 0.93 58% 60% 71% 22%
GPT4 (ICL) 71% 95% 84% 99% 98% 0.91 0.93 46% 56% 53% 89%
MolGPT (T) 26% 86% 41% 71% 47% 0.84 0.88 43% 91% 86% 70%
MolT5 (I) 61% 12% 20% 100% 95% 0.41 0.77 8% 91% 0% 45%
Text+Chem T5 (I) 48% 81% 95% 67% 91% 0.87 0.91 42% 50% 88% 47%
FMG 100% 100% 100% 100% 92% 0.93 0.93 70% 78% 38% 46%

Results on Real-World Datasets. We see similar relative
trends across the baselines in Table 2. VAE (T) methods
still suffer from poor data-efficiency, but MoLeR (FT) be-
comes quite competitive. However, it still struggles on RS
and Memb. The low uniqueness and novelty of the VAE
baselines invalidates its seemingly high RS score, achieved
by sampling smaller molecules. Meanwhile, FMG keeps
high RS scores while lifting coverage to be far more reason-
able, as the size of the dataset becomes larger. FMG is one
of only two methods who achieve 100% uniqueness (the
other being RW with access to expert annotations) while
tying for first and second on diversity for HOPV and PTC,
respectively.

CLM baselines exhibit similar struggles, and notably per-
form far worse on HOPV, likely due to the photovoltaic
domain shifting further out-of-distribution compared to
the drug-pervasive pretraining distribution, e.g. ChEMBL.
Amongst grammar-based methods, FMG surpasses even
RW on RS (by 12% and 18%), suggesting FMG is more
amenable to synthesis considerations even for larger, more
hand-engineered molecules. Though membership is not
strictly defined for these two domains, FMG appears to do
exceptionally well for PTC (halides) but poor for HOPV
(thiophenes), which is surprising considering. As we see
later in C, k imposes a sharp tradeoff between Memb. and
{Div.,RS}, though FMG is capable of achieving excep-
tional numbers for either/or. Our results suggest domain-
general FMs are already aligned with chemistry-specific
desiderata like synthesizability and specificity, promoting
the intrinsic quality of the grammar.
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used by (Guo et al., 2022b) curated from literature, as well
as two real-world datasets from the photovoltaic and toxi-
cology domains used by (Sun et al., 2024).

Table 1. Results on Small Datasets Isocyanates (11 examples),
Acrylates (32) and Chain Extenders (11). Best rounded result(s)
for each metric bolded. (T): Training from scratch; (FT): Fine-
tuning, (I): Inference, using posterior interpolation. Since T5 (I)
methods struggle to generate sufficient valid and unique samples,
we exclude them from ranking.
Method Valid (Avg.) Unique Div. RS Memb.

Train Data 100% 100% 100% 100% 0.61 0.67 0.80 100% 100% 100% 100% 100% 100%

JT-VAE (T) 100% 5.8% 0.5% 2.3% 0.72 0.29 0.62 5.5% 4.9% 2.2% 66.5% 48.64% 79.6%
Hier-VAE (T) 100% 99.6% 99.7% 99.8% 0.83 0.83 0.83 1.85% 3.04% 2.69% 0.05% 0.82% 43.6%
MHG (T) 100% 75.9% 86.8% 87.4% 0.88 0.89 0.90 2.97% 36.8% 50.6% 12.1% 0.93% 41.2%
MoLeR (FT) 100% 87.1% 40.7% 100% 0.86 0.80 0.91 69.2% 97.7% 70.7% 77.3% 72.2% 97.3%
MoLeR (I) 100% 65.7% 45.4% 51.1% 0.90 0.90 0.90 61.3% 76.2% 92.3% 0.08% 32.0% 95.5%
STONED 100% 100% 99.8% 99.8% 0.85 0.84 0.93 5.63% 11.2% 6.78% 79.8% 47.9% 61.0%
DEG 100% 100% 100% 100% 0.86 0.86 0.93 27.2% 43.9% 67.5% 96.3% 69.6% 93.5%
GPT4 (ICL) 91% 73.0% 35.1% 63.5% 0.86 0.78 0.87 84.4% 95.0% 98.0% 93.7% 99.7% 99.5%
MolT5 (I) 76% 0.9% 0.3% 7.1% 0.09 0.21 0.75 98.1% 99.6% 48.5% 99.8% 100% 100%
Text+Chem T5 (I) 42% 26.2% 46.4% 49.8% 0.55 0.71 0.80 87.6% 58.3% 43.9% 100% 100% 100%
FMG 100% 100% 100% 100% 0.73 0.46 0.85 61.7% 93.0% 99.1% 99.6% 100% 99.8%

Results on Small Datasets. We first observe in Tables 1 and
2 that VAE methods struggle to generate unique molecules,
suggesting they collapse in this extreme setting, consis-
tent with findings by (Guo et al., 2022b; Sun et al., 2024).
Hier-VAE fares better, as it incorporates inductive bias of
larger substructures, but this comes at the expense of RS
and Memb., suggesting an undesirable shift in distribution.

Meanwhile, the CLMs struggle with task comprehension,
sometimes mixing natural language with SMILES, or vio-
lating SMILES syntax, e.g. forgetting to close parentheses.
The few valid examples are often repetitive or similar (as
low as <1% uniqueness and <0.6 Div.), despite efforts to
find balanced decoding strategies like varying beam width
or adjusting temperature. To their credit, the few valid and
unique examples achieve high RS and Memb., suggesting
that the LMs may have memorized a few relevant examples
in the domain but failed to generalize.

The grammar-based methods do better on validity and cover-
age, but struggle across RS and Memb.. Despite optimizing
for RS and Div., DEG still falls short of FMG. This indicates
that these methods can learn the syntax of the underlying
language, but not its semantics like synthesizability or mem-
bership criteria, signs of expert-level understanding. FMG’s
high RS scores are hence impressive considering that we
only prompted GPT to “highlight the primary functional
groups of the molecule”. FMG also achieves nearly 100%
class membership in Table 1. In fact, ICL also achieves high
RS and Memb., suggesting MMFMs are sufficiently knowl-
edgeable about these niche chemical classes that it can to
some extent learn the molecular generation task in-context.
However, ICL has similar struggles as CLMs in generating
valid and unique examples. By combining the semantic com-
prehension of ICL with our formal framework, we implicitly
capture the knowledge into the selections while ensuring
validity and robust performance.

However, FMG still leaves some to be desired across cov-
erage. Our investigation reveals the learning procedure is
inclined towards forming cliques representing more com-
plex substructures which are characteristic of the chemical
class or known to be synthetically accessible. The applica-
bility of a rule decreases as the RHS becomes more complex,
and so the grammar’s coverage decreases. We suspect the
low diversity to be due to this phenomenon occurring in
the extreme setting of having ⇡ 30 or less samples, as that
creates fewer rules which are less applicable.

Table 2. Results on Real-World Datasets HOPV (316 examples)
and PTC (348). Same protocol as Table 1. Since VAE (T) methods
struggle to generate sufficient unique samples, we exclude them
from ranking.
Method Valid (Avg.) Unique Novelty Div. RS Memb.

Train Data 100% 100% 100% N/A N/A 0.86 0.94 51% 87% 100% 30%

JT-VAE (T) 100% 11% 8% 100% 80% 0.77 0.83 99% 96% 84% 27%
Hier-VAE (T) 100% 43% 20% 96% 85% 0.87 0.91 79% 92% 76% 25%
Hier-VAE +expert (T) 100% 29% 28% 92% 75% 0.86 0.93 84% 90% 82% 17%

MoLeR (FT) 100% 100% 99% 100% 99% 0.90 0.92 42% 71% 60% 30%
MoLeR (I) 100% 100% 94% 100% 97% 0.90 0.92 25% 79% 74% 45%
DEG 100% 98% 88% 99% 87% 0.93 0.95 19% 38% 46% 27%
RW (expert) 100% 100% 100% 100% 100% 0.89 0.93 58% 60% 71% 22%
GPT4 (ICL) 71% 95% 84% 99% 98% 0.91 0.93 46% 56% 53% 89%
MolGPT (T) 26% 86% 41% 71% 47% 0.84 0.88 43% 91% 86% 70%
MolT5 (I) 61% 12% 20% 100% 95% 0.41 0.77 8% 91% 0% 45%
Text+Chem T5 (I) 48% 81% 95% 67% 91% 0.87 0.91 42% 50% 88% 47%
FMG 100% 100% 100% 100% 92% 0.93 0.93 70% 78% 38% 46%

Results on Real-World Datasets. We see similar relative
trends across the baselines in Table 2. VAE (T) methods
still suffer from poor data-efficiency, but MoLeR (FT) be-
comes quite competitive. However, it still struggles on RS
and Memb. The low uniqueness and novelty of the VAE
baselines invalidates its seemingly high RS score, achieved
by sampling smaller molecules. Meanwhile, FMG keeps
high RS scores while lifting coverage to be far more reason-
able, as the size of the dataset becomes larger. FMG is one
of only two methods who achieve 100% uniqueness (the
other being RW with access to expert annotations) while
tying for first and second on diversity for HOPV and PTC,
respectively.

CLM baselines exhibit similar struggles, and notably per-
form far worse on HOPV, likely due to the photovoltaic
domain shifting further out-of-distribution compared to
the drug-pervasive pretraining distribution, e.g. ChEMBL.
Amongst grammar-based methods, FMG surpasses even
RW on RS (by 12% and 18%), suggesting FMG is more
amenable to synthesis considerations even for larger, more
hand-engineered molecules. Though membership is not
strictly defined for these two domains, FMG appears to do
exceptionally well for PTC (halides) but poor for HOPV
(thiophenes), which is surprising considering. As we see
later in C, k imposes a sharp tradeoff between Memb. and
{Div.,RS}, though FMG is capable of achieving excep-
tional numbers for either/or. Our results suggest domain-
general FMs are already aligned with chemistry-specific
desiderata like synthesizability and specificity, promoting
the intrinsic quality of the grammar.
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• (optional) Motif 1: 6,7,8,10,11
• (optional) Motif 2: 8,9,10,11

We made sure everything worked as expected on a few case studies. Then, we ran our full evaluation protocol.

F.2. FMG-Text Best Of Ensemble Results

Figure 7. We vary k from 2-10 (small dataset) and 2-5 (real-world dataset) to compare FMG-Text with FMG.

The full results of varying k for FMG-Text, in comparison to the results in App. E, is shown in Fig. 7.

F.3. Motivation for Images Over Text

In addition to the quantitative edge FMG has over FMG-Text, we also provide additional points of consideration for choosing
images as the format of representation over text.

1. Literature review of LLM’s chemistry comprehension abilities. Foundation models like GPT-4o and Gemini have
shown multi-modal comprehension ability in aligning natural language descriptions with corresponding images for
advanced reasoning, but there has been less work on aligning formal languages like SMILES with corresponding images.
This may be because LLMs find it easier to obtain semantics from natural descriptions rather than SMILES. For instance,
studies like that done by White et al. (2023) (Section D) and Guo et al. (2023) find LLMs perform great on tasks
that require reasoning from the natural description of molecules, but struggle when fed SMILES/SELFIES (e.g. 0%
SMILES-to-name success in the first study).

2. Technical formulation is in terms of hypergraphs. Our underlying formulation builds off the history of hyperedge-
replacement grammars, which operate at the hyperedge (or substructure) level instead of the atom level. SMILES/-
SELFIES syntax doesn’t easily support substructure-level annotations and extending it to do so not only is out of the
scope of this work but also changes the data used for LLM pre-training. Meanwhile, rdkit has a library of functions
for highlighting, color-coding, and rendering substructures. SMILES/SELFIES is also incompatible with a particular
detail in our formulation, which treats bonds (not atoms) as the fundamental units. Our design choice ensures that each
clique’s atoms (edges) are disjoint, which is essential for our grammar induction and molecule reconstruction. Because
SMILES/SELFIES encodes atoms explicitly but treat bonds implicitly, there’s no straightforward way to annotate
bonds or define disjoint cliques. Enforcing compatibility would require taking the bond-atom dual of (1) our grammar
formulation or (2) the SMILES/SELFIES syntax. This mismatch, discussed in the preliminaries, further motivates our
use of images, where we can easily highlight constituent bonds.

3. Interpretability of the grammar learning process. We thought long and hard about how the complex, hierarchical
structured representation of hypergraphs can be fed into LLMs. After initial conversations with chemists, we came to
the conclusion that highlighting substructures is the most visually meaningful way to consume the information. We,
in parallel with a few others like Wang et al. (2025), identified an opportunity for combining the latest multi-modal
understanding and cheminformatics rendering tools. We hope these points sufficiently motivate the visual representation
input, and a summarized discussion will be added to the main text.
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(← ) Example conversion from clique tree to production rules; (Left) Each node of 
tree contains a substructure (red), edges mean shared bonds between substructures; 
(Right-top) Rule extracted from second clique of the tree, with a non-terminal 
hyperedge for the LHS and the clique’s substructure being the RHS; (Right-bottom) 
example of rule application, dashed connections are matching bonds & atoms

Ablation studies demonstrate versatility of method and key enablers of performance.

( ↑ ) We vary k from 2-10 (small dataset) and 2-5 (real-world dataset) to observe tradeoffs 
in generation metrics as k increases (more top decomps used). We modify FMG to use a 
text-based encoding (FMG-Text) instead of molecular images.
( ↓ ) For each FMG module, we swap MMFM for a heuristic (-module). Results use 𝑘 = 5.

( ↓ ) We trained FMG on a 1k subset (0.05%) of the refined ZINC dataset used by the 
MOSES benchmark. Baseline numbers are copied from the MOSES leaderboard.
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Figure 4. We vary k from 1-10 for FMG and 2-10 for FMG-Text
(see Sec. 5.2). Full FMG results in App. E. Full comparison
between FMG and FMG-Text in App. F.3.

ence between Top-k versus 1-k FMG for diversity and RS,
suggesting tournament rankings reflect understanding of
class-specific motifs more and is neutral to broader gener-
ative criteria. Results on real-world datasets and further
analysis are in App. E.

5.2. Ablation Study on Image vs Text Input Format

We also add results in Tables 1 & 2 from a controlled study
where we modify FMG to use a text-based encoding (FMG-
Text) instead of molecular images to test our hypothesis that
images are superior to text as the input format.

Setup. Each FMG input is a grid of cells showing (1) a
molecule, (2) a molecule with one substructure, or (3) a
molecule with two substructures highlighted in different
colors. While (1) can be replaced by SMILES, (2) and
(3) require visual emphasis of substructures, which text-
based formats struggle to express. We use a verbose but
reliable approach: number all atoms and list motif atoms.
This improved parsing and allowed us to fully re-implement
FMG with text inputs (FMG-Text) by swapping each visual
cell for its text-based counterpart. We replicated the Sec.
5.3 study for FMG-Text too, and the aggregate results on
small datasets are shown in Fig. 4 (Text).

Results. FMG-Text is a competitive alternative when im-
ages cannot be used. Barring FMG, FMG-Text leads in
13/24 columns of Tables 1 & 2. FMG with image inputs still
performs best overall – especially on diversity and synthesiz-
ability, which are crucial for practical molecule generation.
We identify a tradeoff for Isocyanates & Acrylates that is
not present for Chain Extenders. Text inputs can make small
motif identification (membership) easier and more robust
to larger k. Image inputs better support global substruc-
ture reasoning, which drives higher synthesizability. Chain
Extenders are more linear, so the choice of text or image
representation may be perceived equally by FMG. Results

on real-world datasets and additional background on why
FMG defaults to images over text are in App. F.

5.3. Ablation Study on Heuristic vs MMFM Modules

Table 4. For each module, we swap MMFM for a heuristic (-
module). We report the “1-k” FMG (FMG Union) and avg. across
k runs (FMG Avg) on the 3 small datasets. We choose k = 5.
Method Novelty Div. RS Memb.

FMG 99.96 99.87 99.94 0.81 0.83 0.84 78.7 97.2 98.8 64.42 37.88 22.07
FMG (-merge) 99.95 99.88 99.94 0.76 0.83 0.85 39.7 90.3 96.4 93.74 16.40 14.44
FMG (-edge) 99.95 99.87 99.95 0.81 0.83 0.84 66.8 92.7 98.4 58.57 33.83 16.23
FMG (-root) 99.97 99.86 99.94 0.82 0.85 0.86 54.9 87.0 96.2 47.01 22.18 14.84

Setup. We separately ablate each MMFM-assisted module
to investigate how crucial each module is for FMG. We
ablate the merge module by directly passing G(T1)

C
to Step

3.3.4, the spanning tree module by the maximal spanning
tree (MST) heuristic (Tarjan & Yannakakis, 1984), and the
root module by picking a root clique at random. Ablating
any LLM module breaks the overall design story, so we can
no longer rank top k in earnest, hence we omit Top-k FMG.

Results. In Table 4, we see ablating any MMFM com-
ponent has negative implications for the results, albeit in
different ways and differently across datasets. Ablating
Merge discourages the class-defining motifs for acrylates
and chain extenders to be formed during decomposition,
meaning they are less likely captured in the rules (with an
exception for isocyanates, whose defining motif (N=C=O)
has only 2 bonds and must already be in a clique). For
isocyanates, RS drops significantly: it’s known an amine
(R-NH2) reacts with phosgene (COCl2) to produce the iso-
cyanate, so without MMFM’s knowledge, the intermediate
may not be formed, producing rules less amenable to syn-
thetic considerations. Ablating MMFM-guided spanning
tree construction has milder consequences. Diversity, RS,
and membership are only slightly worse. The MST heuristic
is well-motivated, but its rule-based selection is less adapt-
able to domain-specific constraints like chemical reactivity,
since it models interaction strength solely on the basis of
neighborhood overlap. Meanwhile, an MMFM is more flex-
ible to capture these constraints, selectively breaking the
heuristics when context necessitates it.

6. Conclusion
We present a MMFM-guided grammar induction frame-
work for molecular generation. FMG with GPT-4o as the
base model already demonstrates expert-approved reason-
ing abilities by applying its chemistry knowledge, image
comprehension, and in-context abilities within our guided
tree decomposition algorithm. We use innovative prompt-
ing and feedback mechanisms to ensure the workflow is
interpretable, user-friendly, customizable, and (dare we say)
foundational for future molecular design workflows.
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( ↑ ) Generative coverage, synthesizability, and specificity of FMG exceeds Chemical 
LMs, VAEs, non-LLM grammar-based methods, and LLM baselines.


