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3D Question Answering

answer natural language questions based on 3D scenes
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couch facing?

coffee table

<3D Scene><Question>



Why Use 2D LVLM: Lack of Large-scale 3D-language Data

Strategies for achieving effective 3D-Language alignment
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3D-based and hybrid methods requires large amount of training data (large bubble size) but
still leads to a poor 3D-QA performance:
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Using 2D LVLM in a zero-shot manner:

2D-based method
(well aligned)

text token

image token



how to use 2D LVLM: zero-shot inference2

Due to token limit, 2D LVLMs can only process a few views:

Ø uniform sampling: 

Ø image retrieval: 



28.3
27.9

29.1
28.3

23.5

24.5

25.5

26.5

27.5

28.5

29.5

30.5

1 3 5 7 9 11 13 15 17 19 21 28

uniform sampling image retrieval

12.9

15.8

EM@1

k: Number of Selected Views

how to use 2D LVLM: zero-shot inference2

add more views does not always help
—in fact, it may degrade performance
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view selection is a key factor affecting performance
—— image retrieval vs. uniform sampling
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Uniform Sampling -- ignores question context

Image Retrieval – misses answer information
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how to use 2D LVLM: zero-shot inference2

select critical and diverse views for 3D-QA

<Question>: What is the black couch facing?

<Answer>: coffee table

(a) Visual ComparisoncdViews – “the black couch facing a coffee table” is included

Uniform Sampling -- ignores question context

Image Retrieval – misses answer information

Critical: contain information crucial for 
answering questions
Diverse: filter out the overlapping views



cdViews: Selecting critical and diverse Views3

The pipeline of zero-shot 3D-QA:

option ①: uniform sampling

option ②: image retrieval

option ③: cdViews
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Training Stage:

viewSelector is trained in two steps:

1) Data annotation. viewAnnotator automatically label views as positive, negative, or uncertain.

2) Model training. viewSelector is then trained in a supervised manner using these labels.

positive views — label 1

negative views — label 0

uncertain views — disregard
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The details of viewAnnotator:
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Inference Stage:

cdViews loads two modules for view selection:

1) viewSelector—prioritizes views most likely to contain answer-related information

2) viewNMS—removes redundant ones and improve the view diversity.
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viewNMS operates in 3 steps: 

1) Ranking views: sorts all views by their scores in

descending order;
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cdViews: Selecting critical and diverse Views3

The details of viewNMS:

View distance calculation (based on the camera parameters 

[𝑅|𝑡]):

1. orientation distance:

where 𝑝! is a quaternion representation of the orientation 𝑅!
2. position distance:

3. view distance:



Experimental Results4

Comparison with SOTA :
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Ablation studies — cdViews components

viewSelector: improves by 1.4% over the uniform sampling baseline, which
validate that it can effectively prioritizes critical views.
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Ablation studies — cdViews components

viewNMS: reduces the input to just 9 views—almost half the visual token 
length—without reducing the performance but further boosting EM@1 by 
0.4%.



Conclusion

• Lack of large-scale 3D-language dataset in 3D-QA 

• how to effectively use 2D LVLM for 3D-QA in a zero-shot manner

Research Problems:

Contributions:

• explore the use of 2D LVLM to address 3D-QA in a zero-shot manner

• introduce cdViews to capture critical and diverse views

• achieves state-of-the-art performance on two 3D-QA benchmarks



Thank you

Paper: https://arxiv.org/pdf/2505.22143

Code: https://github.com/fereenwong/cdViews

https://arxiv.org/pdf/2505.22143
https://github.com/fereenwong/cdViews

