o3 ICML

International Conference
On Machine Learning

Enhancing Decision-Making of Large
Language Models via Actor-Critic

Heng Dong*l!l: Kefei Duan*l?l] Chongjie Zhang!?!

'Tsinghua University, ?Washington University in St. Louis

Motivation

= LLMs are powerful in NLP but struggle in complex decision-making tasks.

= Challenges:

* [imited long-term reasoning (auto-regressive bias).

= Fragile rollout-based planning.

" Goal: Enable robust and scalable decistion-making with LLLLMs using
reinforcement learning insights.

Key Idea — LLAC Framework

= T.AC: LLM-based Actor-Critic

" Combines LLM prior policy (actor) with action evaluation (critic).

= Critic uses logits of positive/negative tokens to compute Q-values.

= Optimizes policy via gradient-free KL-constrained update.

Algorithm 1 LAC: LLM-based Actor-Critic algorithm.

13

A AR~ Tl

~

Input: current task goal g, history h;, actor 7 pm, for-
ward model fiy, value-based critic Qpyym, hyperpa-
rameter «, candidate action size n.

: Output: selected action a;
s {agyics ~ mm(-lg, he)s

> candidate actions
fori =1tondo
u} < fum(g, he,al); > predict future trajectory

i P(yw|g,he,af,ui) .
Qrim(g, he, af, u}) + log prd

B P(yilg;he,ab,ul) * D> action

evaluation (Sec. 4.1)

: end for
: Wpew(aﬂgy he) < mem(at|g, he) exp(aQrim(g; he,

ay,ut)); > policy optimization (Sec. 4.2)

D aj < argmaxg; Toew(al|g, ht)

Trajectory

[Instruction]: (...)
Your task is to: put a
saltshaker in drawer.

(..

[Obs 4]: You open the
cabinet 2. The cabinet
2 is open. In it, you
see a plate 1, a
saltshaker 1, and a
soapbottle 1.

[LAC Inference 4]

[Act4]:

[Obs5]: You You pick
up the saltshaker 1 from

. the cabinet 2.

[Reflection]: Now I find a saltshaker (1). Next, I need to take it. I can take |
the saltshaker after finding it. The thought is reasonable. This step is GOOD. |

Prior Action
Distribution 1 5,

al a® a*

Updated Action
__Distribution ey

at a® a®

Action Evaluation (Sec. 4.1)

[Candidate a']:

[Imagined Traj u']: You pick up the saltshaker 1
from the cabinet 2.

[Reflection]: I have taken saltshaker 1 in this
place. This step is GOOD.

[Critic @11: 0.81355 by Quy = log =

(w)
Py} (Ea-3)

[Candidate a®]: [Candidate a®]:

())
[Critic Q%]: 0.79087 | [Critic @] 0.5905%

Policy Optimization (Sec. 4.2)

Mnew = My explaQuum) (Eq. 6)

How LAC Works

How LAC Works

1. Sample actions from LILM (17,).

-

Trajectory | -

[Instruction]: (...)
Your task is to: put a
saltshaker in drawer.
(...)

[Obs 4]: You open the
cabinet 2. The cabinet
2 is open. In it, you
see a plate 1, a
saltshaker 1, and a
soapbottle 1. a

Prior Action
Dislri.bu 1iﬂn RL LM

a” a

[LAC Inference 4]

[Candidate al]:

[Candidate a®]:

[Candidate a®]:

How LAC Works

2. Predict future trajectories (via f1).

[Imagined Traj u']: You pick up the saltshaker 1
from the cabinet 2.

How LAC Works

3. Evaluate each action:

P(“GOOD”)
Q(a) - log P(MBADH)

[Critic @']: 0.81355 by Qi = log % (Eq. 3)

[Critic Q“]: 0.79087 [Critic @*]: 0.59058

How LAC Works

4. Update policy:
Tnew X Ty - €xp(a Q)

Prior Action }\
Distribution 7, /|

f‘ Updated Action }\
Distribution 1, e

A

e

a® a Policy Optimization (Sec. 4.2)

Tyew = Miim explaQuum) (Eq. 6)

How LAC Works

@ Reflections: LLM also generates self-judgments (““This step is GOOD”) to aid
evaluation.

[Reflection] : Now I find a saltshaker (1). Next, I need to take it. I can take .
the saltshaker after finding it. The thought is reasonable. This step is GOOD. |

[Reflection]: I have taken saltshaker 1 in this
place. This step is GOOD.

How LAC Works

" Sample an action from 7, and then execute it in the environment

Updated Action
Distribution ;..

[Act4]:

[ObsS]): Yeou You pick
up the saltshaker 1 from
the cabinet 2.

How LAC Works

" This is the full algorithm process.

Trajectory
[Reflection]: Now I find a saltshaker (1). Next, I need to take it. I can take

[Instruction] : (...) the saltshaker after finding it. The thought is reasonable. This step is GOOD.
Your task is to: put a
saltshaker in drawer. l
(ine) . Action Evaluation (Sec. 4.1)
[Obs4): You open the Prior Action |
cabinet 2. The cabinet Distribution m,,, [Candidate@’): take saltshaker 1 from cabinet 2
2 is open. In it, you [Imagined Traj u'): You pick up the saltshaker 1
see a plate 1, a | from the cabinet 2.
saltshaker 1, and a [Reflection]: I have taken saltshaker 1 in this
soapbottle 1. a’ \ place. This step is GOOD.

| [Critic Q'): O.SIJSSbyQu,.-Io('-}gf (Eq.3)
|LAC Inference 4] [Updated Action | /) [Candidate a®): [Candidate a*]:

Distribution /
. s ol | ¥ (...)

[Actd]: take saltshaker | | | [Critic Q*): 0.790%7 [Critic Q%) : 0.5905%
[ObsS]): You You pick a’ Policy Optimization (Sec. 4.2)

up the saltshaker 1 from
the cabinet 2. Myew = My explaQuin) (Eq. 6)

Results & Benchmarks

= Benchmarks
= ALFWorld (high-level), BabyAl-Text (low-level), WebShop (infinite actions)

AlfWorld WEN LAC (ours) W ReAct RAP mem ICFI RAFA BabyAl-text (task: go to)
0.6
L8 o
0.8 0.7
GPT-4+ReAct 0.66
0.7 GPT-4+ReAct
0.6
0.6
4B
o @ 0.5 0.46 0,45
505 s 2 .
ﬁ & 0.4 -
§ 0.4 4 § a2 0.32
(o] (]) 30 -
0.3
0.3 4 0.26 26 .26
0.2
0.2 1 02 .16 0.16 0.16
0.1 0.1 OB
.02
0.0 -

CodeLlama-T8

Gemma-T8

Llama-3-8B

Different Large Language Models

Mistral-78

Codellama-TB

Gemma-TB

Llama-3-8B8

Different Large Language Models

Mistral-78

Results & Benchmarks

= Benchmarks
= ALFWorld (high-level), BabyAI-Text (low-level), WebShop (infinite actions)

. LAC [ours] e ReAct
TS

Codellama-TH Gemma-TH Llama-3.88 Mistral-78 Codellama-78 Gemma- T8 Uamia-3-B8 Mistral-TH
Different Large Language Models Gefferent Large Language Models

Results & Benchmarks

= Highlights
" Outperforms ReAct, RAP, ICPI, even GPT-4+ReAct in many tasks

» Works well across multiple open-source LLMs (e.g., CodeLlama, Mistral)

0.8

0.7

0.6

0.5

Success Rate

03

0.2

0.1

0.0-

ReAct w/ finetuned policy
e LAC w/ finetuned pelicy N ReAct

Conventional Policy Gradient w/ dense rewards " Conventional Decision Transformer
= Conventional Policy Gradient

Claude-3-5-sonnet + ReAct

GPT-40 + ReAct

.« Claude-3-haiku + ReAct

0% GPT-d0-mini + ReAct

Summary & Takeaways

" Summary
" New way to combine LLLM priors with evaluated planning
= Works with lightweight LLLMs

» Gradient-free, interpretable, and generalizable

= Q Future

" Deeper planning with trees, adaptation to continuous rewards.

Our code: https://github.com/drdh/LAC

ICML

International Conference
On Machine Learning

Thanks for Your Listening

	Slide 1: Enhancing Decision-Making of Large Language Models via Actor-Critic
	Slide 2: Motivation
	Slide 3: Key Idea — LAC Framework
	Slide 4: How LAC Works
	Slide 5: How LAC Works
	Slide 6: How LAC Works
	Slide 7: How LAC Works
	Slide 8: How LAC Works
	Slide 9: How LAC Works
	Slide 10: How LAC Works
	Slide 11: How LAC Works
	Slide 12: Results & Benchmarks
	Slide 13: Results & Benchmarks
	Slide 14: Results & Benchmarks
	Slide 15: Summary & Takeaways
	Slide 16: Thanks for Your Listening

