Active feature acquisition via explainability-driven ranking

Osman Berke Guney, Ketan Suhaas Saichandran, Karim Elzokm, Ziming Zhang, Vijaya B. Kolachalama

Problem statement

- Real-world feature acquisition is often costly, time-consuming, and sequential. Active feature acquisition (AFA) frameworks address this sequential optimization problem.
- The objective is to find a predictor f_{θ} and a policy network q_{π} such that the given constraint objective is minimized:

$$\min_{\theta,\pi} \mathbb{E}_{\mathbf{x}yk} \mathbb{E}_{M \sim q_{\pi}}[\ell(f_{\theta}(\mathbf{x}_{M}), y)], \text{ s.t.} \sum_{j \in M} c_{j} \leq k.$$

- Traditionally, this problem has been addressed using RL-based algorithms or greedy methods based on information theory.
- We developed a method that leverages local explanation techniques to generate instance-specific feature importance rankings, by reframing the AFA problem as a feature prediction task.

Our method

- We use a two-step training strategy.
- First, we trained a classifier and employed a feature explanation method to derive importance rankings.
- In the first stage, we fed the masked input using features ordered by their importance rankings, where the target is the next feature in the ranking sequence.

a) Masked Input and Target Feature Index Generation

Our method

- During inference, q_{π} , is not % 100 accurate, so the feature subset \hat{M}_t , generated by q_{π} , does not always contain the top t features with the highest ranking order.
- To address this, in the second stage, we generated a mask from the policy predictions and selected the target feature as the highest-ranked unacquired feature.

a) Masked Input and Target Feature Index Generation

Our method

- A decision transformer was employed [1] as the policy network.
- At each time step, it receives three tokens: the masked input, an action token, and a reward token. The action token represents the index of the most recently acquired feature, while the reward corresponds to the predictor network's output.

Results

Results

Table: Stage-wise classification results, with extended first-stage training (250 epochs), demonstrate the advantage of our two-stage approach over prolonged single-stage training.

	CIFAR10	CIFAR100	BloodMNIST	ImageNette
# of classes:	10	100	8	10
First-stage (250)	$75.96_{\pm0.16}\%$	$45.91_{\pm 0.36}\%$	$79.83_{\pm0.19}\%$	$73.95_{\pm0.25}\%$
First-stage	$75.76_{\pm0.19}\%$	$46.05{\scriptstyle \pm 0.25}\%$	$79.25_{\pm0.15}\%$	$73.76_{\pm0.42}\%$
Second-stage	$78.44_{\pm0.15}\%$	$46.99_{\pm 0.15}\%$	$83.87_{\pm 1.05}\%$	$78.96_{\pm0.12}\%$

	Spam	Metabric	CPS	CTGS	CKD
# of classes:	2	6	3	2	2
First-stage (250)	$0.952_{\pm.001}$	$62.52_{\pm 1.27}\%$	$67.23_{\pm 0.48}\%$	$0.916 _{\pm .0002}$	$0.822_{\pm .01}$
First-stage	$0.951 _{\pm .0002}$	$62.48_{\pm 1.39}\%$	$67.21_{\pm 0.15}\%$	$0.916 _{\pm .0004}$	$0.825 _{\pm .008}$
Second-stage	$0.955_{\pm .0001}$	$69.83_{\pm0.41}\%$	$67.45_{\pm 0.13}\%$	$0.916_{\pm .0001}$	$0.836_{\pm .07}$

Conclusions

- Our method outperforms or matches state-of-the-art AFA approaches.
- Instance-specific feature importance rankings derived from local explanation methods are effective for the AFA task.
- Two-stage training strategy is effective.

Acknowledgments

 This project was supported by grants from the National Institute on Aging's Artificial Intelligence and Technology Collaboratories (P30-AG073105), the American Heart Association (20SFRN35460031), and the National Institutes of Health (R01-HL159620, R01-AG062109, R01-AG083735, and R01-NS142076).

References

[1] L. Chen, K. Lu, A. Rajeswaran, K. Lee, A. Grover, M. Laskin, P. Abbeel, A. Srinivas, and I. Mordatch, "Decision transformer: Reinforcement learning via sequence modeling," in *Advances in Neural Information Processing Systems* (M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan, eds.), vol. 34, pp. 15084–15097, Curran Associates, Inc., 2021.