
Active feature acquisition via explainability-driven
ranking

Osman Berke Guney, Ketan Suhaas Saichandran, Karim
Elzokm, Ziming Zhang, Vijaya B. Kolachalama



Problem statement

• Real-world feature acquisition is often costly, time-consuming,
and sequential. Active feature acquisition (AFA) frameworks
address this sequential optimization problem.

• The objective is to find a predictor fθ and a policy network qπ
such that the given constraint objective is minimized:

min
θ,π

ExykEM∼qπ [ℓ(fθ(xM), y)], s.t.
∑
j∈M

cj ≤ k .

• Traditionally, this problem has been addressed using RL-based
algorithms or greedy methods based on information theory.

• We developed a method that leverages local explanation
techniques to generate instance-specific feature importance
rankings, by reframing the AFA problem as a feature
prediction task.



Our method

• We use a two-step training
strategy.

• First, we trained a classifier
and employed a feature
explanation method to
derive importance rankings.

• In the first stage, we fed the
masked input using features
ordered by their importance
rankings, where the target is
the next feature in the
ranking sequence.



Our method

• During inference, qπ, is not
% 100 accurate, so the
feature subset M̂t , generated
by qπ, does not always
contain the top t features
with the highest ranking
order.

• To address this, in the
second stage, we generated
a mask from the policy
predictions and selected the
target feature as the
highest-ranked unacquired
feature.



Our method

• A decision transformer was
employed [1] as the policy
network.

• At each time step, it receives
three tokens: the masked
input, an action token, and
a reward token. The action
token represents the index of
the most recently acquired
feature, while the reward
corresponds to the predictor
network’s output.



Results
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Results

Table: Stage-wise classification results, with extended first-stage training
(250 epochs), demonstrate the advantage of our two-stage approach over
prolonged single-stage training.

CIFAR10 CIFAR100 BloodMNIST ImageNette
# of classes: 10 100 8 10
First-stage (250) 75.96±0.16% 45.91±0.36% 79.83±0.19% 73.95±0.25%
First-stage 75.76±0.19% 46.05±0.25% 79.25±0.15% 73.76±0.42%
Second-stage 78.44±0.15% 46.99±0.15% 83.87±1.05% 78.96±0.12%

Spam Metabric CPS CTGS CKD
# of classes: 2 6 3 2 2
First-stage (250) 0.952±.001 62.52±1.27% 67.23±0.48% 0.916±.0002 0.822±.01

First-stage 0.951±.0002 62.48±1.39% 67.21±0.15% 0.916±.0004 0.825±.008

Second-stage 0.955±.0001 69.83±0.41% 67.45±0.13% 0.916±.0001 0.836±.07



Conclusions

• Our method outperforms or matches state-of-the-art AFA
approaches.

• Instance-specific feature importance rankings derived from
local explanation methods are effective for the AFA task.

• Two-stage training strategy is effective.
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