# Symmetry-Aware GFlowNets

Hohyun Kim, Seunggeun Lee, Min-hwan Oh

Presented by Hohyun Kim

Graduate Schoold of Data Science Seoul National University

#### **GFlowNets**



- GFlowNets: train a "flow" of probability mass through a directed graph of states
- Goal: sample objects in proportional to rewards,  $p(x) \propto R(x)$



- Equivalent actions: actions that lead to isomorphic graphs
- E.g.  $G_2$  and  $G_3$  are isomorphic







#### Method

### Corollary (TB correction)

Assume that  $G_0$  is the empty graph or a single node, so that  $|\operatorname{Aut}(G_0)| = 1$ . Given the complete graph trajectory  $\tau = (G_0, G_1, \dots, G_n)$ , the trajectory balance loss can be written as follows:

$$\mathcal{L}_{TB}(\tau) = \left(\log \frac{Z \prod_{t=0}^{n-1} p(G_{t+1}|G_t)}{|\text{Aut}(G_n)|R(G_n) \prod_{t=0}^{n-1} q(G_t|G_{t+1})}\right)^2.$$

#### Method

### Corollary (TB correction)

Assume that  $G_0$  is the empty graph or a single node, so that  $|\operatorname{Aut}(G_0)| = 1$ . Given the complete graph trajectory  $\tau = (G_0, G_1, \ldots, G_n)$ , the trajectory balance loss can be written as follows:

$$\mathcal{L}_{TB}(\tau) = \left(\log \frac{Z \prod_{t=0}^{n-1} p(G_{t+1}|G_t)}{|\text{Aut}(G_n)|R(G_n) \prod_{t=0}^{n-1} q(G_t|G_{t+1})}\right)^2.$$

• Implication: vanilla GFlowNets are biased toward less symmetric graphs

#### Method

### Corollary (TB correction)

Assume that  $G_0$  is the empty graph or a single node, so that  $|\operatorname{Aut}(G_0)| = 1$ . Given the complete graph trajectory  $\tau = (G_0, G_1, \ldots, G_n)$ , the trajectory balance loss can be written as follows:

$$\mathcal{L}_{TB}(\tau) = \left(\log \frac{Z \prod_{t=0}^{n-1} p(G_{t+1}|G_t)}{|\text{Aut}(G_n)|R(G_n) \prod_{t=0}^{n-1} q(G_t|G_{t+1})}\right)^2.$$

- Implication: vanilla GFlowNets are biased toward less symmetric graphs
- Detailed Balance and Flow-matching objectives can also be adjusted through reward-scaling

### **Experiments: Illustrative Example**



### **Experiments: Synthetic Graphs**





## **Experiments: Molecule Generaion**

| Task    | Method            | Diversity           | Top $K$ div.        | Top $K$ reward      | Uniq. Frac.        |
|---------|-------------------|---------------------|---------------------|---------------------|--------------------|
| Atom    | Vanilla           | $0.929_{\pm 0.024}$ | $0.077_{\pm 0.022}$ | $1.09_{\pm 0.02}$   | $0.93_{\pm 0.077}$ |
|         | Ours (Exact)      | $0.959_{\pm0.01}$   | $0.046_{\pm 0.006}$ | $1.091_{\pm 0.013}$ | $1.0_{\pm 0.0}$    |
|         | Vanilla           | $0.877_{\pm 0.001}$ | $0.153_{\pm 0.003}$ | $0.941_{\pm 0.002}$ | $1.0_{\pm 0.0}$    |
| Fragmer | nt Ours (Approx.) | $0.88_{\pm 0.001}$  | $0.164_{\pm 0.008}$ | $0.949_{\pm 0.006}$ | $1.0_{\pm 0.0}$    |
|         | Ours (Exact)      | $0.879_{\pm 0.0}$   | $0.151_{\pm 0.002}$ | $0.952_{\pm 0.003}$ | $1.0_{\pm 0.0}$    |

### Summary

- Without correction, highly symmetric graphs are less likely to be sampled, while symmetric fragments are more likely to be sampled
- Reward-scaling or flow-scaling can effectively eliminate the bias
- Experimental results show that unbiased methods allow the accurate modeling of the target distribution, which is essential for sampling high-reward molecules.