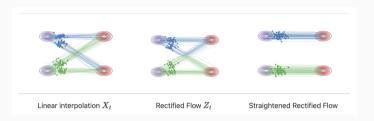


FireFlow: Fast Inversion of Rectified Flow for Image **Semantic Editing**

Yingying Deng, **Xiangyu He**™, Changwang Mei, Peisong Wang, Fan Tang 2025.6

Motivation



- · Rectified Flow (ReFlow) enables fast ODE-based generation.
- Inversion for real images is slow or inaccurate (e.g., FLUX-dev).
- Existing solvers either trade speed for accuracy—or vice versa.
- · We need a simple, fast, training-free method for inversion and editing.

Key Idea

Our Contribution: FireFlow

- · A novel solver for ReFlow with **second-order accuracy** and **first-order cost**.
- · Leverages near-constant velocity in well-trained ReFlows.
- Requires only 8 steps with nearly 1 NFE/step—no extra training or models.

Efficient ODE Solver:

First-Order Scheme: Euler

$$X_{t+\Delta t} = X_t + \Delta t \cdot V_{\theta}(X_t, t)$$

- · Simple and fast: only one function evaluation per step.
- · Local error: $\mathcal{O}(\Delta t^2)$, Global error: $\mathcal{O}(\Delta t)$.
- · Often used in ReFlow, but suffers from accumulation of drift errors.
- · Inefficient for high-fidelity inversion and editing tasks.

Efficient ODE Solver:

Second-Order Scheme: Midpoint

$$X_{t+\frac{\Delta t}{2}} = X_t + \frac{\Delta t}{2} \cdot v_{\theta}(X_t, t)$$

$$X_{t+\Delta t} = X_t + \Delta t \cdot v_{\theta} \left(X_{t+\frac{\Delta t}{2}}, t + \frac{\Delta t}{2} \right)$$

- Two function evaluations per step: at t and at $t + \frac{\Delta t}{2}$.
- Global error: $\mathcal{O}(\Delta t^2)$ higher accuracy than Euler.
- Approximates v_{θ} using a central slope better trajectory tracking.
- More accurate for inversion/editing, but incurs 2x NFE cost.

Efficient ODE Solver:

Second-Order Scheme: FireFlow

$$\hat{v}_{\theta}(X_{t},t) = v_{\theta} \left(X_{(t-1) + \frac{\Delta t}{2}}, (t-1) + \frac{\Delta t}{2} \right) \qquad \text{(load } v_{\theta} \text{ from memory)}$$

$$\hat{X}_{t+\frac{\Delta t}{2}} = X_{t} + \frac{\Delta t}{2} \cdot \hat{v}_{\theta}(X_{t},t) \qquad \text{(estimated midpoint)}$$

$$X_{t+1} = X_{t} + \Delta t \cdot v_{\theta} \left(\hat{X}_{t+\frac{\Delta t}{2}}, t + \frac{\Delta t}{2} \right) \qquad \text{(run \& save } v_{\theta} \text{ to memory)}$$

- Only 1 NFE per step memory-efficient and fast.
- Retains $\mathcal{O}(\Delta t^2)$ global error like true midpoint.
- Enables accurate inversion/editing in as few as 8 steps.
- · Leverages nearly constant drift in trained ReFlow models.

6

Results & Comparisons

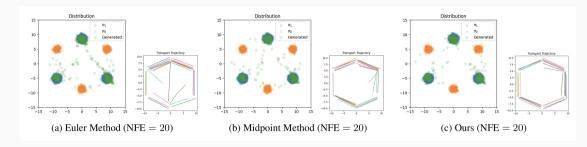


Figure 1: We evaluate the performance of 2-Rectified Flow using the Euler solver, midpoint solver, and our proposed approach on a 2D synthetic dataset. The source distribution π_0 (orange) and the target distribution π_1 (green) are parameterized as Gaussian mixture models.

Results & Comparisons

- Inversion: 2×-3× faster than baselines (RF-Solver, ReFlow-Inv.)
- · Reconstruction: Lowest LPIPS, highest SSIM/PSNR at same cost.

Figure 2: Reconstruction comparison across methods. ¹

¹Difference images showing the pixel-wise variations between the source image and the reconstructed images are also provided.

Results & Comparisons

- Inversion: 2×–3× faster than baselines (RF-Solver, ReFlow-Inv.)
- Editing: Best CLIP similarity with fewer editing steps.

Figure 3: Editing comparison across methods.

Conclusion

- FireFlow enables efficient ReFlow inversion with strong editing fidelity.
- · Matches 2nd-order accuracy with minimal cost.
- · No training, no auxiliary models—ready to deploy.
- · Code and supplementary available with submission.

Code Repository

Online Demo Page

ComfyUI Node Page

Thank You!