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The derivation of the bound uses Holder's inequality.
The regularisation term is the Rényi divergence.
The bound generalises and includes Lg1,B0:
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Optimising the bound gives an approximation to the fractional posterior,
which can help with robustness to model misspecifications.

The tightness of the bound depends on both Q and ~.

A new tool in the toolbox of objectives.
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Generation from prior in [R@#]A] x| | ol N ANE
VAE for Fashion-MNIST. EC6im EE R

L1o-5 gives clearer images
and a lower Fréchet incep-
tion distance (FID).
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