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Given a probabilistic model with likelihood p(D|z) and prior p(z),

we want log evidence Levd
def= logEz∼p[p(D|z)]

and a posterior q(z) combining data D with prior.

A common approach to approximate the Bayes posterior is

q∗ = argmax
q∈Q

LELBO

Levd ≥ LELBO
def= Ez∼q[log p(D|z)]− Ez∼q

[
log q(z)

p(z)

]
.

This work introduces a one-parameter γ ∈ (0, 1) lower bound

Levd ≥ Lγ
def= 1

1−γ logEz∼q

[
p(D|z)1−γ

]
− γ

1−γ logEz∼q

[(
q(z)
p(z)

)(1−γ)/γ
]

q∗ = argmax
q∈Q

Lγ =⇒ q∗ ∝∼ p(D|z)γp(z).
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The derivation of the bound uses Hölder’s inequality.

The regularisation term is the Rényi divergence.

The bound generalises and includes LELBO:

lim
γ→1

Lγ = LELBO. (by L’Hôpital rule)

Optimising the bound gives an approximation to the fractional posterior,

which can help with robustness to model misspecifications.

The tightness of the bound depends on both Q and γ.

A new tool in the toolbox of objectives.
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Optimising the bound gives an approximation to the fractional posterior,

which can help with robustness to model misspecifications.

The tightness of the bound depends on both Q and γ.

A new tool in the toolbox of objectives.



The derivation of the bound uses Hölder’s inequality.
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Two-component GMM cali-
bration at α = 0.05. L0.8 gives
best calibrated posteriors.

Obj. µ1 coverage µ2 coverage

L0.7 0.9694 0.9606
L0.8 0.9568 0.9458
L0.9 0.9438 0.9334
ELBO 0.9278 0.9182

Optimising VAE on
MNIST. L0.1 gives
highest test objective.

Obj. Test Objective

L0.1 1677.2
L0.5 1672.8
L0.9 1639.3
ELBO 1583.2

Generation from prior in
VAE for Fashion-MNIST.
L10−5 gives clearer images
and a lower Fréchet incep-
tion distance (FID).

ELBO; FID=83.5 L10−5 ; FID=68.8
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