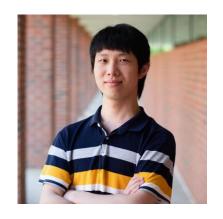


BalancEdit: Dynamically Balancing the Generality-Locality Trade-off in Multi-modal Model Editing

ICML | 2025

Dongliang Guo, Mengxuan Hu, Zihan Guan, Thomas Hartvigsen, Sheng Li



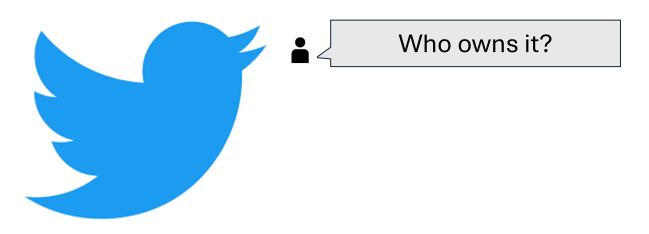


University of Viriginia

Is MLLM Always Right?

Fact is changing over time

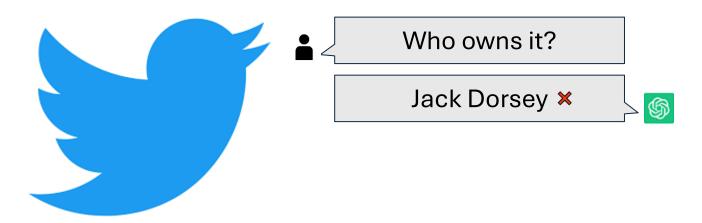
The training data of the large language model is fixed at a certain point in time, and as time goes by, the internal knowledge of the model will become outdated.



Is MLLM Always Right?

Fact is changing over time

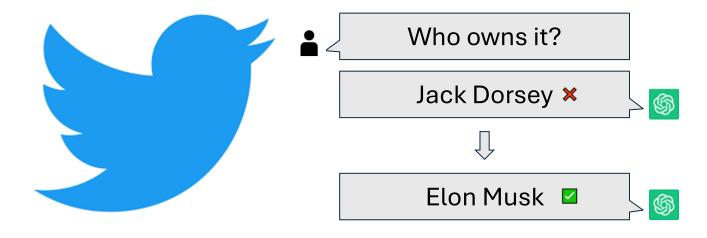
The training data of the large language model is fixed at a certain point in time, and as time goes by, the internal knowledge of the model will become outdated.



Is MLLM Always Right?

Fact is changing over time

The training data of the large language model is fixed at a certain point in time, and as time goes by, the internal knowledge of the model will become outdated.



How to change the model behaviors?

Finetune or Re-train

Example: Llama

- Train for 21 days
- 2048 A100 GPUs
- Over \$2.4M

It is too costly and intractable.

How to change the model behaviors?

Model Editing

Focuses on specific, targeted modifications to a pre-trained model to correct errors, incorporate new knowledge without retraining the entire model.

- Update the target knowledge (Reliability)
- Influence related knowledge (Generality)
- Protect correct knowledge (Locality)

How to ensure the influence scope of a fact?

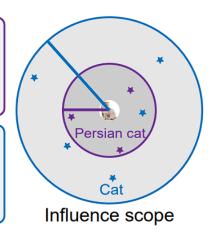
Fact has different scope

Example 1: < Persian cat **breed** is named as Kitty now>

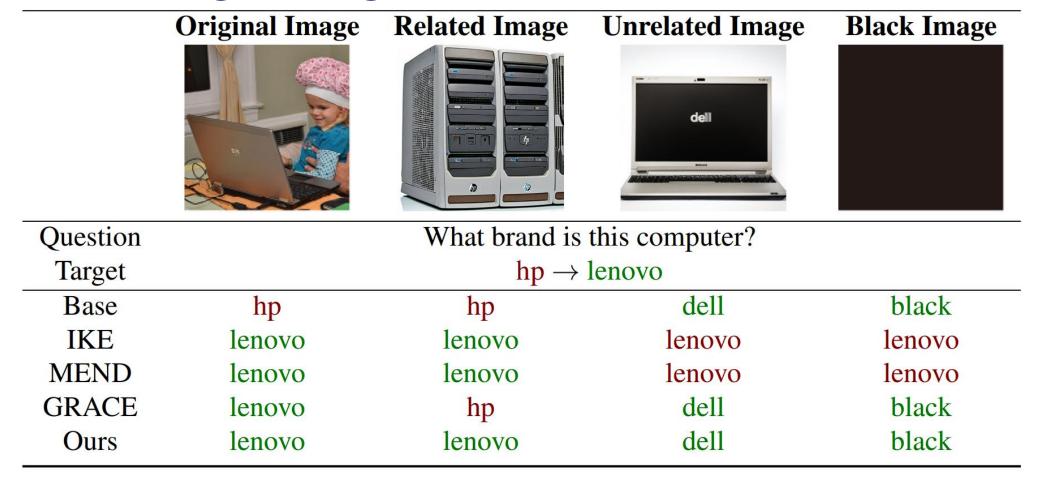
Example 2: < Cat species is named as Kitty now>

Q: What is the name of the **breeds** in the image?

Q: What is the name of the species in the image?

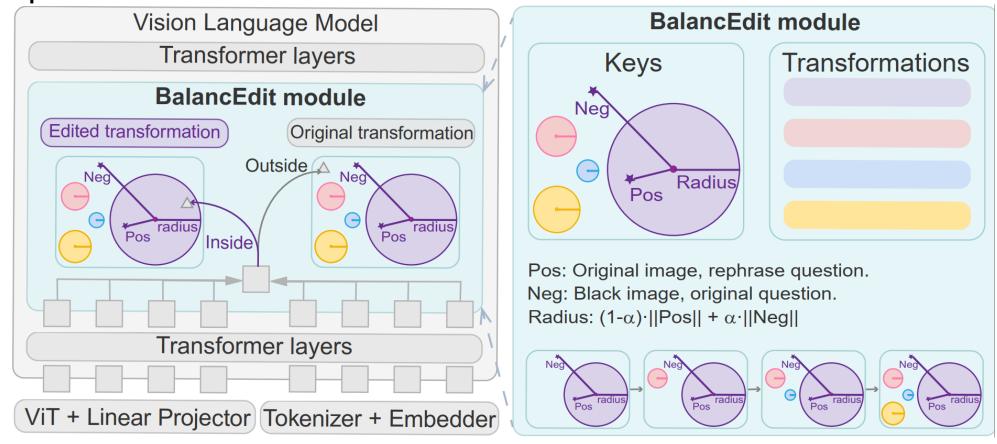


Can existing editing method differentiate it?



They may fail even if a black image is given for the question.

BalancEdit: Dynamically determine the Generality-Locality equilibrium



Example: <Cat species is named as Kitty now>

What is its species?

Center

Step 1: Generate positive and negative sample

Altered text question

What is its species?

What **category** is it?

Center

Positive sample

Altered image input

What is its species?

Negative sample

Step 2: Determine the radius and learn new knowledge

What is its species? is it?

Center Positive sample

What is its species?

Negative sample

Step 3: Evaluation

Center

What **category** is it?

Positive sample

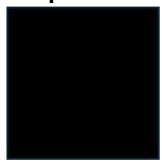
What is its species?

Generality sample

What is its **species**?

Locality sample

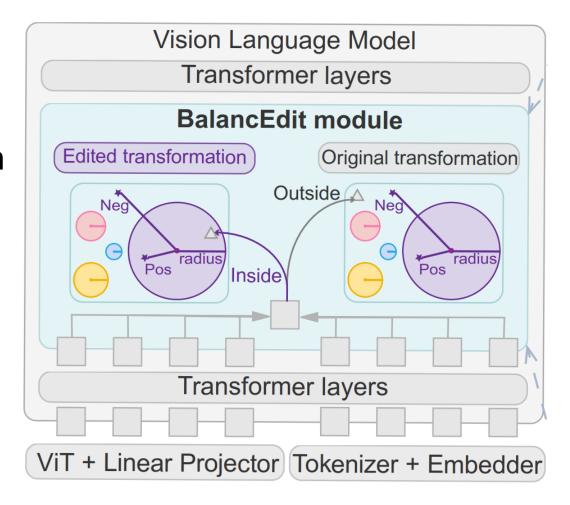
What is its species?



Negative sample

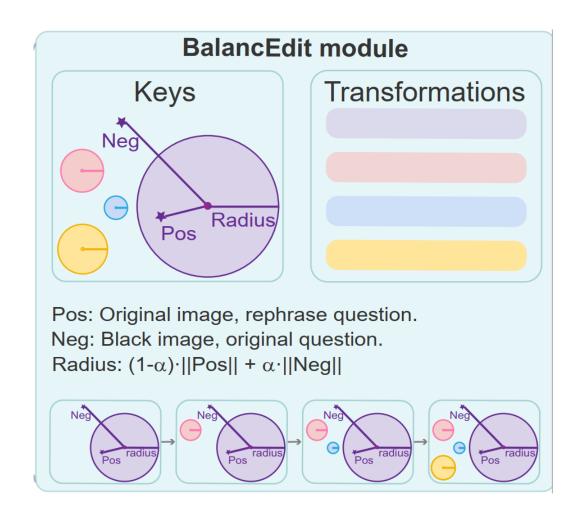
How to inference the MLLM after editing?

- The input is related to the new knowledge.
 - Find the target new knowledge
 - Invoke the edited transformation layer
- The input is **not related** to the new knowledge.
 - Go through the original layer without any changes



How to continually edit MLLM?

- Adding memory to the codebook
- Dynamically adjusting the radius based on knowledge overlapping.



How is the Performance?

Outperforms existing methods on Generality-Locality trade-off

		Pretrain	Backbone									
Dataset	Method		miniGPT4				BLIP-2 OPT					
			Acc↑	T-Gen↑	I-Gen↑	Loc↑	HM↑	Acc↑	T-Gen↑	I-Gen↑	Loc↑	HM↑
MMEDIT	Base	Х	15.04	14.21	13.56	NA	NA	8.50	8.52	6.89	NA	NA
	FT	X	96.53	95.88	96.20	3.20	9.00	99.96	99.41	97.05	0.27	0.80
	IKE	✓	100.00	95.57	100.00	15.47	20.07	99.83	94.47	99.58	11.96	28.77
	MEND	✓	98.39	96.58	97.77	68.82	85.43	97.23	95.86	96.81	69.40	85.29
	GRACE	X	79.82	74.49	70.11	91.66	77.72	74.27	62.90	35.24	90.26	54.19
	BalancEdit (Ours)	X	100.00	99.90	98.91	71.74	88.08	100.00	99.16	90.30	80.04	89.14
OKEDIT	Base	Х	30.42	45.40	72.21	NA	NA	14.35	13.96	15.22	NA	NA
	FT	X	99.69	99.45	99.38	5.52	14.90	99.97	99.54	96.77	0.43	1.27
	IKE	✓	99.71	97.78	99.76	17.45	38.68	99.35	94.20	99.66	13.29	31.28
	MEND	✓	94.44	90.80	95.39	36.20	61.07	90.82	82.82	88.25	28.89	51.70
	GRACE	X	87.84	28.31	29.46	99.99	37.84	54.13	50.67	28.30	94.48	45.69
	BalancEdit (Ours)	X	100.00	99.87	76.46	53.14	71.58	100.00	98.89	65.38	61.18	71.85

High Editing Accuracy

Minimal trade-off

How is the Performance?

- Outperforms existing methods on Generality-Locality trade-off
- Outperforms existing methods on Sequential Edits

	Sequential	Acc↑	T-Gen↑	I-Gen↑	Loc↑	HM↑
FT	X	99.25	99.21	98.64	0.74	2.18
IKE	X	100.00	96.86	100.00	16.91	37.75
MEND	X	93.74	89.98	95.38	37.49	62.14
GRACE	X	87.78	25.96	24.21	99.99	33.39
BalancEdit (Ours)	Х	100.00	100.00	72.31	54.40	71.07
BalancEdit (Ours)	\checkmark	100.00	99.70	72.29	46.25	65.95

Robust on Sequential edits

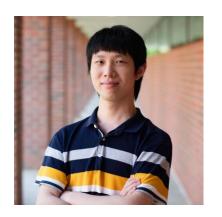
How is the Performance?

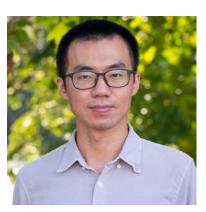
- Outperforms existing methods on Generality-Locality trade-off
- Outperforms existing methods on Sequential Edits
- Time and Data Efficient

	Training tim	Editing time (s)			
FT	0			3.91	
IKE	12			0.38	
MEND	22			1.48	
GRACE	0		3	32.67	
BalancEdit	0			8.04	

BalancEdit: Dynamically Balancing the Generality-Locality Trade-off in Multi-modal Model Editing

Dongliang Guo, Mengxuan Hu, Zihan Guan, Thomas Hartvigsen, Sheng Li





Open to Work

Get in touch!

Dongliang.guo@virginia.edu

Check the paper and Code

