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Problem setting
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Train on labeled source data > Adapt to unlabeled target data

Distribution shift

Domain shift + Category shift



What defines a comprehensive study of UniDA?
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Category ratios defined by: (source-private ratio, shared ratio, target-private ratio)



Current UniDA studies are not comprehensive
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An example of extreme UniDA

Adapt to downstream dataset

Train on large-scale Internet data



A common solution of UniDA

Source

- Supervised loss on source data

- Domain-matching loss on shared class data

\

Identified using uncertainty measurement



Worse than training with source data only

—— Source Only (SO)
—— UAN (Adversarial Training)
—— UniOT (Self-Training)
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Uncertainty measurement

for domain-matching



Our hypothesis

* Representation quality is crucial

* Affects the accuracy of uncertainty measurement

* Affects domain-matching process



Representation quality in extreme UniDA

Data

e class 0 (source)
class 1 (source)
class 2 (source)
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Cross-entropy loss
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Representation quality in non-extreme UniDA
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Representation quality (high-dimensional)

Log of Singular Values
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Dimensional collapse



How to address DC in target representation
without labels?

e Uniformity in self-supervised learning literature

mitigate DC caused by
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Tongzhou Wang, Phillip Isola. Understanding Contrastive Representation Learning through Alignment and Uniformity on the Hypersphere. ICML' 20



The role of uniformity in UniDA

Data Target representation
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SSL improves extreme UniDA by a large margin
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(a) Adversarial Training (UAN) (b) Self-Training (UniOT)

e DCissevere in extreme UniDA

e SSL addresses DC



Takeaways

* Representation quality matters for effective domain-matching

* Representation is affected by category shift

e SSL serves as an easy starting point to address DC in UniDA



