Disparate Conditional Prediction in Multiclass Classifiers ICMI 2025

Sivan Sabato. Eran Treister and Elad Yom-Tov

Discrimination by AI is widespread

FEOC Settles First-Ever Al Discrimination Lawsuit

How artificial intelligence could make pregnancy discrimination in employment more common

Programs to detect AI discriminate against non-native English speakers, shows study

Over half of essays written by people were wrongly flagged as AImade, with implications for students and job applicants

BUSINESS >

Stanford study indicates AI chatbots used by health providers are perpetuating racism

Checking for fairness

Is the classifier fair?

- The protected attribute A has several possible values.
- A confusion matrix for each value a of A:

$$\mathcal{C}_{\mathsf{a}} = \begin{pmatrix} \mathbb{P}[\hat{Y} = 1 \mid Y = 1], & \dots & \mathbb{P}[\hat{Y} = k \mid Y = 1] \\ & \dots & \\ \mathbb{P}[\hat{Y} = k \mid Y = 1], & \dots & \mathbb{P}[\hat{Y} = k \mid Y = k] \end{pmatrix}$$

• Fairness under multiclass equalized odds: all matrices are the same.

Beyond exact fairness

- In practice, exact fairness may be impractical.
- How fair/unfair is a given classifier?
- Which classifier is more fair?
- How to quantify unfairness in an interpretable way?

Unfairness measures

- Previous work
 - Most previous unfairness measures are ad-hoc
 - ★ Difference-based (e.g., Donini et al. 2018, Want et al. 2024)
 - * Ratio-based (e.g., Calmon et al. 2017, Alghamdi et al. 2022)
 - ▶ The value they provide is not directly interpretable.

Unfairness measures

- Previous work
 - Most previous unfairness measures are ad-hoc
 - ★ Difference-based (e.g., Donini et al. 2018, Want et al. 2024)
 - * Ratio-based (e.g., Calmon et al. 2017, Alghamdi et al. 2022)
 - ▶ The value they provide is not directly interpretable.
 - Sabato et al. 2020 proposed an interpretable measure.
 - ⋆ DCP: Disparate Conditional Prediction.
 - ★ Provides a directly interpretable unfairness measure.
 - * However, that work only considered binary classifiers.

Unfairness measures

Previous work

- Most previous unfairness measures are ad-hoc
 - ★ Difference-based (e.g., Donini et al. 2018, Want et al. 2024)
 - * Ratio-based (e.g., Calmon et al. 2017, Alghamdi et al. 2022)
- ▶ The value they provide is not directly interpretable.
- Sabato et al. 2020 proposed an interpretable measure.
 - **★ DCP**: Disparate Conditional Prediction.
 - ★ Provides a directly interpretable unfairness measure.
 - ★ However, that work only considered binary classifiers.

Our contributions

- ▶ We generalize DCP to multiclass classifiers
- We develop a computational approach for calculating the DCP in the multiclass case.
- We show how to find the best-case DCP without access to the confusion matrices.

Definition: Unfairness

The *unfairness of a classifier* is the **fraction of the population** that this classifier treats differently from the baseline.

Definition: Unfairness

The *unfairness of a classifier* is the **fraction of the population** that this classifier treats differently from the baseline.

- $\mathcal{B}_{\hat{Y}|Y}$: The **baseline** conditional distribution of the classifier's prediction given the true label.
- ullet $\mathcal{N}^a_{\hat{\mathcal{V}}|\mathcal{V}}$: A **nuisance** conditional distribution
 - ▶ Can be different for each value of the protected attribute.

Definition: Unfairness

The *unfairness of a classifier* is the **fraction of the population** that this classifier treats differently from the baseline.

- $\mathcal{B}_{\hat{Y}|Y}$: The **baseline** conditional distribution of the classifier's prediction given the true label.
- ullet $\mathcal{N}^a_{\hat{Y}|Y}$: A **nuisance** conditional distribution
 - ► Can be different for each value of the protected attribute.
- The conditional label distribution of the classifier:

$$\mathbb{P}[\hat{Y} \mid Y, A] = \eta_{A,Y} \cdot \mathcal{N}_{\hat{Y}|Y}^A + (1 - \eta_{A,Y}) \cdot \mathcal{B}_{\hat{Y}|Y}.$$

Definition: Unfairness

The *unfairness of a classifier* is the **fraction of the population** that this classifier treats differently from the baseline.

- $\mathcal{B}_{\hat{Y}|Y}$: The **baseline** conditional distribution of the classifier's prediction given the true label.
- ullet $\mathcal{N}_{\hat{Y}|Y}^{a}$: A **nuisance** conditional distribution
 - ▶ Can be different for each value of the protected attribute.
- The conditional label distribution of the classifier:

$$\mathbb{P}[\hat{Y} \mid Y, A] = \eta_{A,Y} \cdot \mathcal{N}_{\hat{Y}|Y}^{A} + (1 - \eta_{A,Y}) \cdot \mathcal{B}_{\hat{Y}|Y}.$$

• DCP := $\min \sum_{a,y} \mathbb{P}[A=a,Y=y] \cdot \eta_{a,y}$, where the minimum is taken over all possible decompositions of the classifier's true conditional label distribution into $\mathcal{B}_{\hat{Y}|Y}$, $\mathcal{N}_{\hat{Y}|Y}^A$.

Multiclass DCP

Theorem

For a multiclass classifier C.

$$\mathrm{DCP}(\mathcal{C}) = \sum_{y \in \mathcal{Y}} \min_{\mathcal{C}_b[y] \in \Delta_k} \sum_{a \in \mathcal{A}} w_a \pi_a^y \max_{\hat{y} \in \mathcal{Y}} \eta(\mathcal{C}_{\textit{baseline}}^{y\hat{y}}, \mathcal{C}_a^{y\hat{y}}),$$

where

$$\eta(a,b) = egin{cases} 1-b/a & b < a, \ 1-(1-b)/(1-a) & b > a, \ 0 & b = a. \end{cases}$$

Bounding the DCP

- Unlike the binary case, the minimization of multiclass DCP is not known to be computationally tractable.
- We provide an analytical lower bound.
- We provide a local minimization procedure, which generates an upper bound.
 - The objective is non-smooth and non-convex
 - It also has regions with large gradients.
 - ► The local minimization procedure is based on sequential solutions of linear programming approximations to the objective.

Bounding the DCP without confusion matrices

- Sometimes, confusion matrices cannot be estimated
 - Lack of access to the classifier
 - Lack of quality validation data
- We can still bound the best-case DCP, using only high level statistics.
- This can be used to audit proprietary non-public classifiers for possible fairness issues.

Experiments

- We compare several approaches for generating the upper bound.
- The results show the advantage of our local minimization along with a greedy initialization.
- In most cases, the approximation factor of the bounds is close to 1.
- See paper for more experiments!

# Labels	Error	Lower	Upper Bounds				Best
		Bound	Average	Greedy	Average+LM	Greedy+LM	Ratio
3	11.74%	5.39%	27.19%	9.65%	14.07%	7.65%	1.42
3	5.71%	4.35%	42.17%	5.92%	32.39%	5.28%	1.21
3	3.96%	3.24%	43.63%	5.07%	16.95%	3.25%	1.00
3	5.15%	4.24%	39.05%	5.40%	14.32%	4.25%	1.00
3	3.36%	2.65%	48.04%	5.20%	5.49%	3.81%	1.44
3	1.85%	1.85%	59.64%	8.22%	17.85%	1.85%	1.00
3	1.96%	1.96%	51.86%	7.88%	13.31%	1.96%	1.00
3	2.32%	2.28%	48.50%	6.57%	10.56%	2.28%	1.00
3	14.00%	4.57%	28.85%	6.47%	13.13%	6.10%	1.34
4	3.91%	1.48%	27.55%	8.12%	1.86%	1.49%	1.00
5	5.61%	2.06%	7.14%	43.01%	6.61%	3.91%	1.90
5	11.83%	4.57%	25.28%	34.40%	22.18%	8.28%	1.81
6	0.87%	0.86%	21.96%	24.65%	9.55%	0.86%	1.00
8	22.61%	8.29%	84.54%	32.03%	38.20%	23.61%	2.85
9	21.54%	5.03%	86.17%	12.50%	6.84%	6.17%	1.23

Poster and paper

https://icml.cc/virtual/2025/poster/45683