Polybasic Speculative Decoding Through a Theoretical Perspective Ruilin Wang¹, Huixia Li², Yuexiao Ma¹², Xiawu Zheng¹³⁴, Fei Chao¹, Xuefeng Xiao², Rongrong Ji¹³ ## **Abstract** Inference latency stands as a critical bottleneck in the large-scale deployment of Large Language Models (LLMs). Speculative decoding methods have recently shown promise in accelerating inference without compromising the output distribution. However, existing work typically relies on a dualistic draft-verify framework and lacks rigorous theoretical grounding. In this paper, we introduce a novel polybasic speculative decoding framework, underpinned by a comprehensive theoretical analysis. Specifically, we prove a fundamental theorem that characterizes the optimal inference time for multi-model speculative decoding systems, shedding light on how to extend beyond the dualistic approach to a more general polybasic paradigm. Through our theoretical investigation of multi-model token generation, we expose and optimize the interplay between model capabilities, acceptance lengths, and overall computational cost. Our framework supports both standalone implementation and integration with existing speculative techniques, leading to accelerated performance in practice. Experimental results across multiple model families demonstrate that our approach yields speedup ratios ranging from 3.31× to 4.01× for LLaMA2-Chat 7B, up to 3.87× for LLaMA3-8B, up to 4.43× for Vicuna7B and up to 3.85× for Qwen2-7B—all while preserving the original output distribution. We release our theoretical proofs and implementation code to facilitate further investigation into polybasic speculative decoding. ¹Key Laboratory of Multimedia Trusted Perception and **Efficient Computing, Ministry of Education of China, Xiamen University** ²ByteDance Inc, ³Institute of Artificial Intelligence, Xiamen University, ⁴Peng Cheng Laboratory, Shenzhen, China #### Framework #### (a) Dualistic speculative decoding Average acceptance length: 3~4 # (b) Polybasic speculative decoding Speedup ratio: 4 × (**) Generalization : (**) Average acceptance length: 8~10 (;) #### **Theoretical Foundations** We establish fundamental properties of polybasic speculative decoding that govern how additional models impact computational cost and acceptance lengths. Our analysis focuses on two main aspects: (i) optimal inference time and (ii) stability of acceptance lengths. #### **Theorem 3.1 (Optimal Inference Time)** For an n-model polybasic system generating N tokens, the total inference time T is expressed as $$T = \sum_{i=1}^{n-1} \frac{N}{L_i} \cdot T_i + \beta \cdot \frac{N}{L_{n-1}} T_n$$ #### **Theorem 3.2 (Model Insertion Efficiency)** Adding M_{new} between M_i and M_{i+1} decreases total inference time if and only if it achieves a sufficiently large increase in acceptance lengths, balanced against its forward-pass cost T_{new} Concretely, if L_{new} is the acceptance length when verifying tokens from M_{new} against M_i , and L'_{I+1} is the acceptance length from M'_{I+1} 's perspective, then improvement occurs if: $$\frac{T_{new}}{T_i} < L_{new} \left(\frac{1}{L_i} - \frac{1}{L_{i-new}}\right) or \frac{T_{new}}{T_{i+1}} < \beta \left(\frac{L_{new-(i+1)}}{L_i} - 1\right)$$ #### Theorem 3.3 (Sampling Stability) In the model chain using speculative sampling can ensure stable acceptance lengths. ### **Experiment** | Table 1. Theoretical Validation via Model Insertion | | | | | | | | | | | |---|------------|--------------------|-------------------------|---------------|----------------|-------|---------------------------------------|--|--|--| | Case | T_i (ms) | $L_{i\text{-new}}$ | T_{new} (ms) | $L_{\rm new}$ | T_{i+1} (ms) | L_i | Speedup | | | | | Non-compliant | 22 | 3.83 | 17.61 | 3.77 | 4 | 4.34 | $2.61 \times \rightarrow 1.08 \times$ | | | | | Compliant | 22 | 6.26 | 7.00 | 4.67 | 4 | 4.34 | $2.61 \times \rightarrow 3.48 \times$ | | | | | CS Drafting | 47.52 | 3.50 | 19.16 | 3.02 | 12.42 | 2.28 | $3.19\times\rightarrow3.88\times$ | | | | Table 2. Average acceptance length (μ) and speedup ratio (c) on different tasks. V7B: Vicuna-7B, L3-8B: LLaMA3-8B-Instruct, L2-7 LLaMA2-Chat-7B, Q2-7B: Qwen2-7B-Instruct. | | | MT | | Trans. | | Sum. | | QA | | Math | | RAG | | Overall | | |--------|-------|-------|-------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|---------|-------| | | Model | c | μ | Our | V7B | 3.77x | 11.22 | 3.07x | 7.76 | 3.01x | 10.24 | 3.65x | 9.53 | 4.43x | 10.28 | 2.98x | 10.30 | 3.48x | 9.88 | | | L3-8B | 3.70x | 9.97 | 3.39x | 8.86 | 3.02x | 9.38 | 3.16x | 9.08 | 3.87x | 10.08 | 2.71x | 9.24 | 3.31x | 9.44 | | | L2-7B | 4.10x | 10.47 | 3.46x | 9.15 | 3.41x | 9.86 | 3.61x | 9.49 | 4.02x | 9.99 | 3.31x | 10.08 | 3.66x | 9.84 | | | Q2-7B | 3.65x | 9.85 | 3.15x | 8.65 | 2.95x | 9.15 | 3.25x | 8.95 | 3.85x | 9.95 | 2.85x | 9.35 | 3.28x | 9.32 | | EAGLE2 | V7B | 3.19x | 4.76 | 2.07x | 3.22 | 2.59x | 3.96 | 2.45x | 3.71 | 3.19x | 4.72 | 2.15x | 3.95 | 2.61x | 4.34 | | | L3-8B | 2.69x | 3.99 | 2.37x | 3.53 | 2.23x | 3.58 | 2.21x | 3.42 | 2.83x | 4.20 | 2.23x | 3.95 | 2.44x | 3.82 | | | L2-7B | 3.04x | 4.48 | 2.61x | 3.96 | 2.50x | 4.04 | 2.55x | 4.05 | 3.04x | 4.68 | 2.40x | 4.19 | 2.70x | 4.30 | | | Q2-7B | 2.40x | 3.74 | 1.45x | 2.45 | 1.59x | 3.06 | 1.81x | 2.91 | 2.63x | 4.26 | 1.72x | 3.27 | 1.94x | 3.51 | EAGLE Vanilla **Communicate us** Paper: https://openreview.net/forum?id=JrxJUMqqz4