Understanding and Mitigating Memorization in Diffusion Models for Tabular Data Zhengyu Fang*, Zhimeng Jiang*, Huiyuan Chen, Xiao Li, Jing Li #### Motivation • **Key question:** Does memorization occur in **tabular** diffusion models, and if so, how can it be effectively mitigated? #### Our contribution: - 1) Conducting the first comprehensive investigation into memorization behaviors within tabular diffusion models - 2) Introduce **TabCutMixPlus**, a simple yet effective data augmentation technique to mitigate memorization ## Metrics – Memorization Ratio Distance $$d(m{x},m{x}') = rac{1}{M} \Biggl(ext{norm} \Biggl(\sqrt{\sum_{i \in \mathcal{F}_{num}} (m{x}_i - m{x}_i')^2} \Biggr) + \sum_{j \in \mathcal{F}_{cat}} \mathbf{1}(m{x}_j eq m{x}_j') \Biggr).$$ Distance Ratio $$r(x) = \frac{d(x, \text{NN}_1(x, \mathcal{D}))}{d(x, \text{NN}_2(x, \mathcal{D}))}$$ Memorization Ratio Mem. Ratio $$= \frac{1}{|\mathcal{G}|} \sum_{x \in \mathcal{G}} \mathbb{I}(r(x) < \frac{1}{3})$$ # Preliminary Preliminary ### **TabCutMixPlus** #### Algorithm 2 Pseudo-code of TabCutMixPlus ``` Require: Training set \mathcal{D}, Number of samples N 1: Augmented sample set \bar{\mathcal{D}} = \emptyset 2: for i = 1 to N do Sample class c from \{1, \dots, C\} with prior class distribution; 3: ▶ Keep class ratio after augmentation. Sample (x_A, y_A) and (x_B, y_B) from class c in \mathcal{D}; \triangleright Randomly select two training samples from the same class. 4: Calculate correlation metrics for features: (a) Pearson correlation coefficient for numerical feature; (b) Cramér's V 5: based on contingency tables for categorical features; (c) ETA coefficient for numerical-categorical pairs. 6: Perform hierarchical clustering on features using correlation metrics; ▶ Group features based on similarity. for each cluster k do 7: Sample \lambda \sim \text{Unif}(0,1) and sampling binary mask M_k with Bernoulli distribution Bern(\lambda); ▶ Proportion of features to exchange within cluster k. \tilde{\boldsymbol{x}}_k \leftarrow M_k \odot \boldsymbol{x}_{A,k} + (1 - M_k) \odot \boldsymbol{x}_{B,k}; 9: \triangleright Mix features in cluster k based on binary mask M_k. Add \tilde{x}_k to \tilde{x}; 10: end for 11: 12: \tilde{y} \leftarrow c; ▶ Assign the label of the new sample. \tilde{\mathcal{D}} = \tilde{\mathcal{D}} \cup (\tilde{x}, \tilde{y}); Save the augmented sample. 14: end for 15: return New Training Set \mathcal{D} \cup \mathcal{D} ``` ## Experiments Table 1. The overview performance comparison for tabular diffusion models on more datasets. "TCM" represents our proposed **TabCut-Mix** and "TCMP" represents **TabCutMixPlus**. "Mem. Ratio" represents memorization ratio. "Improv" represents the improvement ratio on memorization. | | Methods | Mem. Ratio (%) ↓ | Improv. | MLE (%)↑ | α-Precision(%)↑ | β-Recall(%)↑ | Shape Score(%)↑ | Trend Score(%)↑ | C2ST(%)↑ | DCR(%) | |-------|---------------|------------------|------------------------------|------------------|-------------------|------------------|------------------|------------------|-------------------|------------------| | Adult | STaSy | 26.02 ± 0.89 | - | 90.54 ± 0.17 | 85.79 ± 7.85 | 34.35 ± 2.46 | 89.14 ± 2.29 | 86.00 ± 2.97 | 51.89 ± 14.87 | 50.46 ± 0.39 | | | STaSy+Mixup | 24.89 ± 1.30 | 4.37% ↓ | 90.74 ± 0.06 | 90.00 ± 1.91 | 34.24 ± 2.47 | 90.28 ± 1.69 | 87.56 ± 1.06 | 52.61 ± 6.52 | 50.08 ± 0.59 | | | STaSy+SMOTE | 22.92 ± 3.77 | 11.91% ↓ | 90.50 ± 0.24 | 85.81 ± 11.39 | 32.11 ± 5.13 | 86.91 ± 0.81 | 84.36 ± 2.36 | 45.12 ± 8.82 | 50.46 ± 0.20 | | | STaSy+TCM | 20.89 ± 1.33 | 19.71% ↓ | 90.45 ± 0.30 | 85.39 ± 1.61 | 31.24 ± 0.97 | 88.33 ± 3.63 | 85.39 ± 4.03 | 45.49 ± 4.78 | 50.92 ± 0.39 | | | STaSy+TCMP | 21.45 ± 2.60 | 17.59% ↓ | 90.72 ± 0.06 | 86.71 ± 4.12 | 32.63 ± 1.81 | 89.62 ± 1.55 | 86.05 ± 2.44 | 49.12 ± 9.95 | 50.75 ± 0.59 | | | TabDDPM | 31.01 ± 0.18 | - | 91.09 ± 0.07 | 93.58 ± 1.99 | 51.52 ± 2.29 | 98.84 ± 0.03 | 97.78 ± 0.07 | 94.63 ± 1.19 | 51.56 ± 0.34 | | | TabDDPM+Mixup | 30.04 ± 0.41 | 3.14% ↓ | 90.82 ± 0.12 | 95.78 ± 0.68 | 47.65 ± 1.35 | 98.02 ± 1.08 | 96.78 ± 1.33 | 93.65 ± 3.59 | 50.86 ± 0.86 | | | TabDDPM+SMOTE | 28.98 ± 0.78 | 6.56% ↓ | 90.41 ± 0.36 | 94.93 ± 1.72 | 46.10 ± 0.65 | 93.40 ± 1.12 | 90.76 ± 1.76 | 80.75 ± 0.84 | 51.82 ± 0.56 | | | TabDDPM+TCM | 27.55 ± 0.19 | 11.16% ↓ | 91.15 ± 0.06 | 94.97 ± 0.06 | 47.43 ± 1.46 | 98.65 ± 0.03 | 97.75 ± 0.07 | 85.61 ± 16.03 | 50.99 ± 0.65 | | | TabDDPM+TCMP | 26.10 ± 2.11 | 15.83% ↓ | 90.54 ± 0.17 | 92.26 ± 6.97 | 43.49 ± 3.74 | 95.10 ± 4.27 | 91.50 ± 6.53 | 84.76 ± 10.12 | 50.68 ± 0.89 | | | TabSyn | 29.26 ± 0.23 | - | 91.13 ± 0.09 | 99.31 ± 0.39 | 48.00 ± 0.22 | 99.33 ± 0.09 | 98.19 ± 0.50 | 98.68 ± 0.41 | 50.42 ± 0.27 | | | TabSyn+Mixup | 28.29 ± 0.28 | 3.30% ↓ | 90.75 ± 0.24 | 98.63 ± 0.81 | 45.73 ± 2.67 | 98.30 ± 0.90 | 97.91 ± 0.12 | 98.05 ± 2.22 | 50.97 ± 1.10 | | | TabSyn+SMOTE | 27.10 ± 0.15 | 7.36% ↓ | 89.97 ± 0.76 | 98.60 ± 0.50 | 44.72 ± 0.45 | 94.47 ± 0.57 | 91.74 ± 0.42 | 82.55 ± 0.71 | 48.42 ± 0.78 | | | TabSyn+TCM | 27.03 ± 0.22 | 7.60% ↓ | 91.09 ± 0.17 | 99.04 ± 0.42 | 44.95 ± 0.42 | 99.40 ± 0.07 | 98.51 ± 0.08 | 89.18 ± 1.94 | 50.67 ± 0.11 | | | TabSyn+TCMP | 25.99 ± 0.52 | $\mathbf{11.17\%}\downarrow$ | 90.96 ± 0.16 | 98.43 ± 1.04 | 43.23 ± 2.96 | 98.38 ± 0.91 | 96.53 ± 1.47 | 93.39 ± 6.01 | 50.30 ± 0.78 | | | | | | | | | | | | | # Experiments – Different Augmented Ratio # Thank you! https://github.com/fangzy96/TabCutMix