

# Understanding and Mitigating Memorization in Diffusion Models for Tabular Data

Zhengyu Fang\*, Zhimeng Jiang\*, Huiyuan Chen, Xiao Li, Jing Li





#### Motivation

• **Key question:** Does memorization occur in **tabular** diffusion models, and if so, how can it be effectively mitigated?

#### Our contribution:

- 1) Conducting the first comprehensive investigation into memorization behaviors within tabular diffusion models
- 2) Introduce **TabCutMixPlus**, a simple yet effective data augmentation technique to mitigate memorization

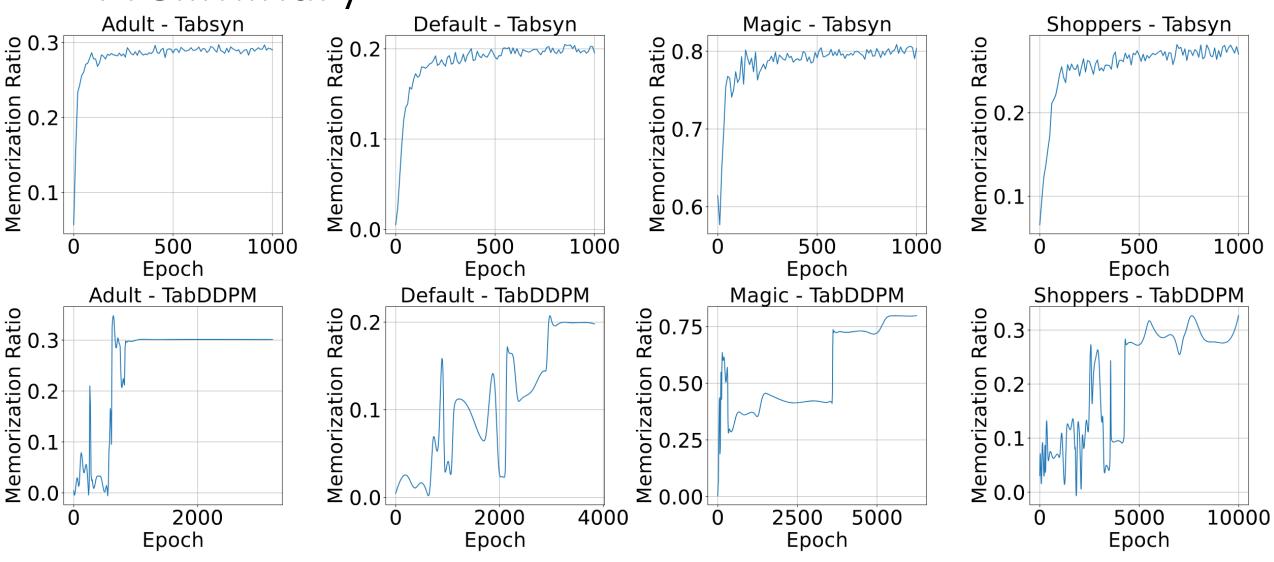


## Metrics – Memorization Ratio

Distance

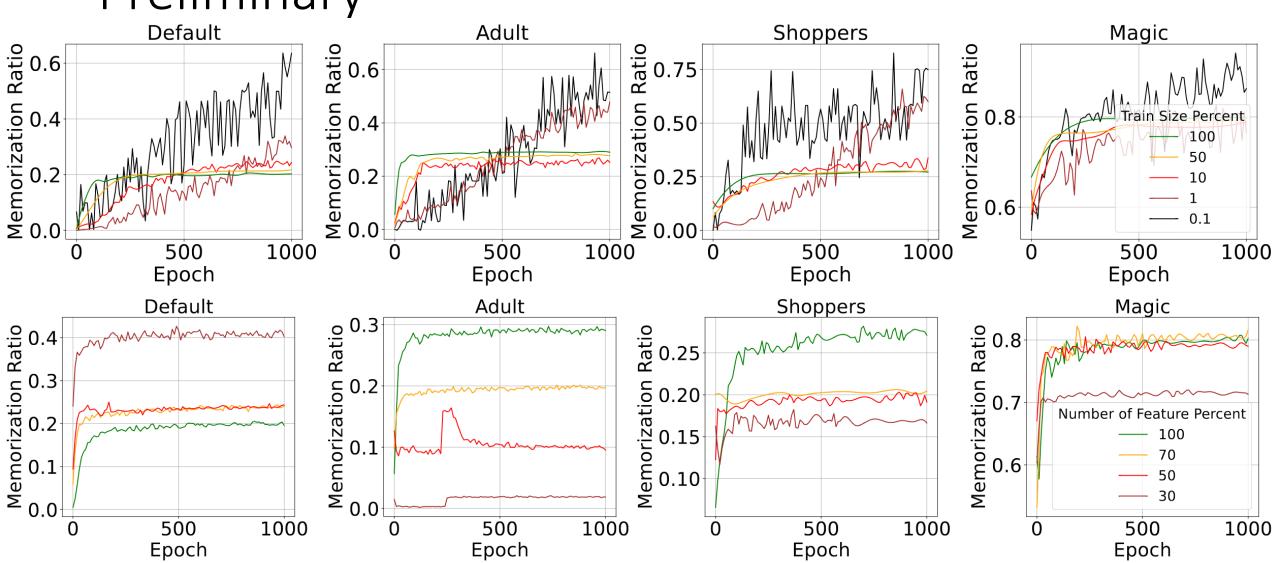
$$d(m{x},m{x}') = rac{1}{M} \Biggl( ext{norm} \Biggl( \sqrt{\sum_{i \in \mathcal{F}_{num}} (m{x}_i - m{x}_i')^2} \Biggr) + \sum_{j \in \mathcal{F}_{cat}} \mathbf{1}(m{x}_j 
eq m{x}_j') \Biggr).$$

Distance Ratio


$$r(x) = \frac{d(x, \text{NN}_1(x, \mathcal{D}))}{d(x, \text{NN}_2(x, \mathcal{D}))}$$

Memorization Ratio

Mem. Ratio 
$$= \frac{1}{|\mathcal{G}|} \sum_{x \in \mathcal{G}} \mathbb{I}(r(x) < \frac{1}{3})$$




# Preliminary





Preliminary





### **TabCutMixPlus**

#### Algorithm 2 Pseudo-code of TabCutMixPlus

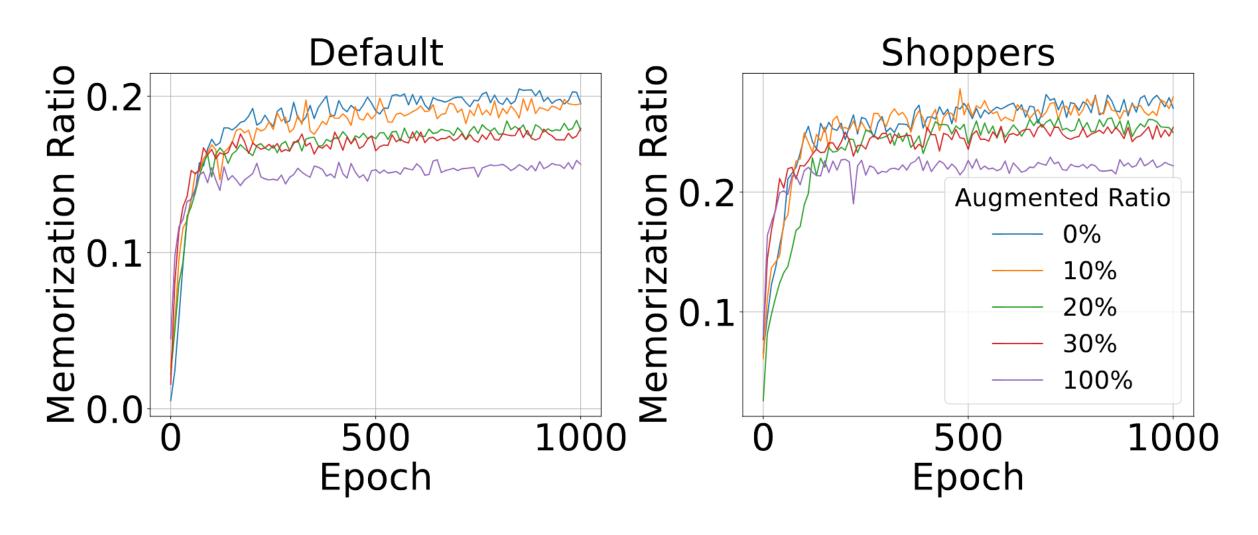
```
Require: Training set \mathcal{D}, Number of samples N
 1: Augmented sample set \bar{\mathcal{D}} = \emptyset
 2: for i = 1 to N do
         Sample class c from \{1, \dots, C\} with prior class distribution;
 3:
                                                                                                      ▶ Keep class ratio after augmentation.
         Sample (x_A, y_A) and (x_B, y_B) from class c in \mathcal{D}; \triangleright Randomly select two training samples from the same class.
 4:
         Calculate correlation metrics for features: (a) Pearson correlation coefficient for numerical feature; (b) Cramér's V
 5:
     based on contingency tables for categorical features; (c) ETA coefficient for numerical-categorical pairs.
 6:
         Perform hierarchical clustering on features using correlation metrics;
                                                                                                       ▶ Group features based on similarity.
         for each cluster k do
 7:
              Sample \lambda \sim \text{Unif}(0,1) and sampling binary mask M_k with Bernoulli distribution Bern(\lambda);
                                                                                                                                  ▶ Proportion of
     features to exchange within cluster k.
              \tilde{\boldsymbol{x}}_k \leftarrow M_k \odot \boldsymbol{x}_{A,k} + (1 - M_k) \odot \boldsymbol{x}_{B,k};
 9:
                                                                                   \triangleright Mix features in cluster k based on binary mask M_k.
              Add \tilde{x}_k to \tilde{x};
10:
         end for
11:
12:
         \tilde{y} \leftarrow c;
                                                                                                       ▶ Assign the label of the new sample.
         \tilde{\mathcal{D}} = \tilde{\mathcal{D}} \cup (\tilde{x}, \tilde{y});

    Save the augmented sample.

14: end for
15: return New Training Set \mathcal{D} \cup \mathcal{D}
```



## Experiments


Table 1. The overview performance comparison for tabular diffusion models on more datasets. "TCM" represents our proposed **TabCut-Mix** and "TCMP" represents **TabCutMixPlus**. "Mem. Ratio" represents memorization ratio. "Improv" represents the improvement ratio

on memorization.

|       | Methods       | Mem. Ratio (%) ↓ | Improv.                      | MLE (%)↑         | α-Precision(%)↑   | β-Recall(%)↑     | Shape Score(%)↑  | Trend Score(%)↑  | C2ST(%)↑          | DCR(%)           |
|-------|---------------|------------------|------------------------------|------------------|-------------------|------------------|------------------|------------------|-------------------|------------------|
| Adult | STaSy         | $26.02 \pm 0.89$ | -                            | $90.54 \pm 0.17$ | $85.79 \pm 7.85$  | $34.35 \pm 2.46$ | $89.14 \pm 2.29$ | $86.00 \pm 2.97$ | $51.89 \pm 14.87$ | $50.46 \pm 0.39$ |
|       | STaSy+Mixup   | $24.89 \pm 1.30$ | 4.37% ↓                      | $90.74 \pm 0.06$ | $90.00 \pm 1.91$  | $34.24 \pm 2.47$ | $90.28 \pm 1.69$ | $87.56 \pm 1.06$ | $52.61 \pm 6.52$  | $50.08 \pm 0.59$ |
|       | STaSy+SMOTE   | $22.92 \pm 3.77$ | 11.91% ↓                     | $90.50 \pm 0.24$ | $85.81 \pm 11.39$ | $32.11 \pm 5.13$ | $86.91 \pm 0.81$ | $84.36 \pm 2.36$ | $45.12\pm8.82$    | $50.46 \pm 0.20$ |
|       | STaSy+TCM     | $20.89 \pm 1.33$ | 19.71% ↓                     | $90.45 \pm 0.30$ | $85.39 \pm 1.61$  | $31.24 \pm 0.97$ | $88.33 \pm 3.63$ | $85.39 \pm 4.03$ | $45.49 \pm 4.78$  | $50.92 \pm 0.39$ |
|       | STaSy+TCMP    | $21.45 \pm 2.60$ | 17.59% ↓                     | $90.72 \pm 0.06$ | $86.71 \pm 4.12$  | $32.63 \pm 1.81$ | $89.62 \pm 1.55$ | $86.05 \pm 2.44$ | $49.12 \pm 9.95$  | $50.75 \pm 0.59$ |
|       | TabDDPM       | $31.01 \pm 0.18$ | -                            | $91.09 \pm 0.07$ | $93.58 \pm 1.99$  | $51.52 \pm 2.29$ | $98.84 \pm 0.03$ | $97.78 \pm 0.07$ | $94.63 \pm 1.19$  | $51.56 \pm 0.34$ |
|       | TabDDPM+Mixup | $30.04 \pm 0.41$ | 3.14% ↓                      | $90.82 \pm 0.12$ | $95.78 \pm 0.68$  | $47.65 \pm 1.35$ | $98.02 \pm 1.08$ | $96.78 \pm 1.33$ | $93.65 \pm 3.59$  | $50.86 \pm 0.86$ |
|       | TabDDPM+SMOTE | $28.98 \pm 0.78$ | 6.56% ↓                      | $90.41 \pm 0.36$ | $94.93 \pm 1.72$  | $46.10 \pm 0.65$ | $93.40 \pm 1.12$ | $90.76 \pm 1.76$ | $80.75 \pm 0.84$  | $51.82 \pm 0.56$ |
|       | TabDDPM+TCM   | $27.55 \pm 0.19$ | 11.16% ↓                     | $91.15 \pm 0.06$ | $94.97 \pm 0.06$  | $47.43 \pm 1.46$ | $98.65 \pm 0.03$ | $97.75 \pm 0.07$ | $85.61 \pm 16.03$ | $50.99 \pm 0.65$ |
|       | TabDDPM+TCMP  | $26.10 \pm 2.11$ | 15.83% ↓                     | $90.54 \pm 0.17$ | $92.26 \pm 6.97$  | $43.49 \pm 3.74$ | $95.10 \pm 4.27$ | $91.50 \pm 6.53$ | $84.76\pm10.12$   | $50.68 \pm 0.89$ |
|       | TabSyn        | $29.26 \pm 0.23$ | -                            | $91.13 \pm 0.09$ | $99.31 \pm 0.39$  | $48.00 \pm 0.22$ | $99.33 \pm 0.09$ | $98.19 \pm 0.50$ | $98.68 \pm 0.41$  | $50.42 \pm 0.27$ |
|       | TabSyn+Mixup  | $28.29 \pm 0.28$ | 3.30% ↓                      | $90.75 \pm 0.24$ | $98.63 \pm 0.81$  | $45.73 \pm 2.67$ | $98.30 \pm 0.90$ | $97.91 \pm 0.12$ | $98.05 \pm 2.22$  | $50.97 \pm 1.10$ |
|       | TabSyn+SMOTE  | $27.10 \pm 0.15$ | 7.36% ↓                      | $89.97 \pm 0.76$ | $98.60 \pm 0.50$  | $44.72\pm0.45$   | $94.47 \pm 0.57$ | $91.74 \pm 0.42$ | $82.55 \pm 0.71$  | $48.42 \pm 0.78$ |
|       | TabSyn+TCM    | $27.03 \pm 0.22$ | <b>7.60%</b> ↓               | $91.09 \pm 0.17$ | $99.04 \pm 0.42$  | $44.95 \pm 0.42$ | $99.40 \pm 0.07$ | $98.51 \pm 0.08$ | $89.18 \pm 1.94$  | $50.67 \pm 0.11$ |
|       | TabSyn+TCMP   | $25.99 \pm 0.52$ | $\mathbf{11.17\%}\downarrow$ | $90.96 \pm 0.16$ | $98.43 \pm 1.04$  | $43.23\pm2.96$   | $98.38 \pm 0.91$ | $96.53 \pm 1.47$ | $93.39 \pm 6.01$  | $50.30 \pm 0.78$ |
|       |               |                  |                              |                  |                   |                  |                  |                  |                   |                  |



# Experiments – Different Augmented Ratio





# Thank you!

https://github.com/fangzy96/TabCutMix

