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TL;DR:We theoretically transform numerical rewards in RL4CO Methodology
into pairwise preference signals and integrate local search during
fine-tuning, empirically enabling faster convergence and higher-

1> Comparison with Existing Algorithms on Standard Benchmarks
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» Neural solvers provide efficient near-optimal solutions for large-scale COPs

Table 1: Experiment results on TSP and CVRP. Gap is evaluated on 10k instances and Times are summation of them.

through two main approaches: Supervised Learning (SL) and Reinforcement
. Learning (RL).
' > SL approaches require high-quality solution datasets for training.
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> Distinction from RLHF

Our work distinguishes itself from preference optimization methods in RLHF
especially for LLMs 1n a critical dimension. While RLHF typically relies on
subjective, offline human-annotated datasets, our Preference Optimization
framework for COPs employs an active, online learning strategy grounded 1n
objective metrics (e.g., route length) to 1dentify and prioritize superior solutions.

» Additional inference time: While neural solvers are efficient in
inference, many works adopt techniques like local search as a post-
processing step to further improve generated solutions, but incurs
additional inference costs.

» Training Objectives
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