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Hyperparameter Selection in the Scaling-Centric Era

• Hyperparameter selection can be formulated as a bandit problem over a discrete
space of pre-selected configurations.

• Examples: prompts for fine-tuning, architectural scaling choices, or policy
parameters in reinforcement learning
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Statistical Guarantees

• Goal: Select a subset Λrel containing as many reliable hyperparameters as
possible, while controlling the number of unreliable choices.

• Two common statistical guarantees are the family-wise error rate (FWER) and the
false discovery rate (FDR).
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Lean-Then-Test

• Learn-then-Test (LTT) performs statistically valid hyperparameter selection based
on p-values computed from the collected evidence1.

• Adaptive evaluation and flexible stopping rules are not possible using
p-value-based testing (p-hacking).

1Angelopoulos et al., “Learn then test: Calibrating predictive algorithms to achieve risk control”.
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Adaptive Learn-then-Test

• To improve the efficiency of hyperparameter selection, we propose Adaptive
Learn-then-Test (aLTT), a sequential hyperparameter selection algorithm based
on e-processes2.

• aLTT can decide whether to stop or continue testing, and it can select the subset
of hyperparameters to test next based on the collected evidence.

2Xu and Ramdas, “Online multiple testing with e-values”.
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Simulation: Automated Prompt Engineering

• Goal: Find high-quality prompt templates from a set of LLM-generated prompts.

• Prompts are generated using the LLaMA 3.3 70B Instruct model and evaluated
using the LLaMA 3 8B Instruct model.

• Tasks are sampled from the Instruction Induction dataset3.

3Honovich et al., “Instruction induction: From few examples to natural language task descriptions”.
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Simulation: Automated Prompt Engineering

• We compare LTT against aLTT with an ϵ-greedy acquisition strategy.

• Adaptive evaluation allows aLTT to discover more models using fewer LLM calls.
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Simulation: Automated Prompt Engineering

• Hyperparameters can then be post-selected from Λ̂rel to maximize some
alternative metric.

• For example, one could choose the shortest prompt in Λ̂rel.
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Conclusion

• We have proposed aLTT, a statistically valid hyperparameter selection procedure
based on e-value testing.

• In many applications, aLTT substantially reduces the evaluation cost compared to
non-adaptive strategies.
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