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Introduction
Stochastic Coordinate Descent Algorithms

Coordinate Descent (CD):

Updates one coordinate at a time.

Efficient for high-dimensional / large-scale problems.

Random Coordinate Descent (RCD):

Selects a coordinate randomly with replacement at each iteration.

Random-Permutation Coordinate Descent (RPCD):

Generates a random permutation without replacement at each epoch.

Figure: Illustration of the difference between RCD and RPCD update orders.



Introduction
Gap between Practice and Theory

Empirical Observations:

RPCD often outperforms RCD.

Theoretical Gap:

Lack of rigorous proof for RPCD’s superiority over RCD.

Fundamental Question:

Can we provide a theoretical explanation for RPCD’s faster convergence?
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Figure: Empirical performance comparison of RCD and RPCD on a quadratic function.



Preliminaries
Problem Settings

Problem: Unconstrained quadratic minimization

min
x

f(x) :=
1

2
x⊤Ax,

where the Hessian A ∈ Sn
+ is a positive definite matrix.

We define σ := λmin(D
−1A) (D is the diagonal part of A).

Without loss of generality, we assume that A is unit-diagonal (i.e., aii = 1 for
all i). In this case, D = I, so σ = λmin(A).



Contributions
RCD Lower Bound

Theorem 3.1 (RCD Lower Bound)

For an initial point x0 ∈ Rn, let xT be the output of RCD after T iterates. Then,
except for a Lebesgue measure zero set of initial points,

lim
T→∞

(
E
[
∥xT ∥2

]
∥x0∥2

)1
T

≥ max

{(
1− 1

n

)
,
(
1− σ

n

)2}
.

This theorem establishes a lower bound on the convergence rate of RCD for all
quadratic functions with positive definite Hessian.



Contributions
Permutation-Invariant Hessian

Definition

We define the class of Hessians API
σ ,Aσ as

API
σ :=

{
diag{σIk + (1− σ)1k1

⊤
k , In−k} : 2 ≤ k ≤ n

}
,

Aσ :=
{
A = API ⊙ vv⊤ : API ∈ API

σ ,v ∈ {±1}n
}

for given σ ∈ (0, 1].

Note: If A ∈ Aσ, σ = λmin(A).

Example:

A =


1 0.7 −0.7 0
0.7 1 −0.7 0
−0.7 −0.7 1 0
0 0 0 1

 (σ = 0.3).



Contributions
RPCD Upper Bound

Theorem 3.3 (RPCD Upper Bound)

For an initial point x0 ∈ Rn, let xK be the output of RPCD after K epochs. If
A ∈ Aσ and x0 ̸= 0,

lim
K→∞

(
E
[
∥xK∥2

]
∥x0∥2

)1
K

≤ max

{(
1− 1

n

)n

,
(
1− σ

n

)2n}
.

This upper bound matches the lower bound for RCD in Theorem 3.1.



Contributions
Stronger RCD Lower Bound

Theorem 3.4 (Stronger RCD Lower Bound)

Let A ∈ Aσ. For an initial point x0 ∈ Rn, let xT be the output of RCD after T
iterates. Then, except for a Lebesgue measure zero set of initial points,

lim
T→∞

(
E
[
∥xT ∥2

]
∥x0∥2

)1
T

≥ 1− 1

n
+

(1− σ)2

n
.

This theorem provides a tighter lower bound for RCD specifically in the class
Aσ.

This bound is strictly larger than RPCD’s upper bound from Theorem 3.3.



Contributions
RCD vs RPCD: Bounds
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Figure: Theoretical convergence bounds of RCD and RPCD.



Conjecture
RCD vs RPCD

Conjecture 4.1

For an initial point x0 ∈ Rn, let xK be the output of RPCD after K epochs. If
σ ∈ (0, 1], A ∈ Sn

+ with λmin(A) = σ, and x0 ̸= 0, then

lim
K→∞

(
E
[
∥xK∥2

]
∥x0∥2

)1
K

≤ max

{(
1− 1

n

)n

,
(
1− σ

n

)2n}
.

We conjecture that RPCD is faster than RCD for all quadratic functions with
positive definite Hessian.



Conclusion
RCD vs RPCD

Main Result: RPCD achieves a strictly better contraction rate than RCD on

quadratics with permutation-invariant structures.

Significance: First theoretical result showing RPCD’s advantage over RCD.

Open Question: Does this advantage extend to all positive definite matrices?


