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Introduction

Stochastic Coordinate Descent Algorithms

e Coordinate Descent (CD):

e Updates one coordinate at a time.

o Efficient for high-dimensional / large-scale problems.
e Random Coordinate Descent (RCD):

o Selects a coordinate randomly with replacement at each iteration.
e Random-Permutation Coordinate Descent (RPCD):

o Generates a random permutation without replacement at each epoch.

RCD |:l:1|Z4|zz|z2|21|Z5|13|Z4|$3|$1|Z2|Z1|13|13|€'35|

RPCD |12|I4|$3|I5|11|I5|$3|$1|$2|I4|l‘3|11|I2|$4|I5|
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Figure: Illustration of the difference between RCD and RPCD update orders.



Introduction

Gap between Practice and Theory

o Empirical Observations:

o RPCD often outperforms RCD.
@ Theoretical Gap:

e Lack of rigorous proof for RPCD’s superiority over RCD.
e Fundamental Question:

o Can we provide a theoretical explanation for RPCD's faster convergence?
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Figure: Empirical performance comparison of RCD and RPCD on a quadratic function.



Preliminaries

Problem Settings

@ Problem: Unconstrained quadratic minimization

min f(x) := %:cTA:c,

where the Hessian A € S is a positive definite matrix.
o We define 0 := Amin (D™ A) (D is the diagonal part of A).

@ Without loss of generality, we assume that A is unit-diagonal (i.e., a;; = 1 for
all 7). In this case, D = I, s0 0 = Amin(A).



Contributions
RCD Lower Bound

Theorem 3.1 (RCD Lower Bound)

For an initial point o € R", let 7 be the output of RCD after T iterates. Then,
except for a Lebesgue measure zero set of initial points,

i, (SR s e {(1- ). -2}

@ This theorem establishes a lower bound on the convergence rate of RCD for all
quadratic functions with positive definite Hessian.




Contributions

Permutation-Invariant Hessian

We define the class of Hessians A", A, as
AP = {diamg{aI;C +(1—0)1p1], I, 3} :2<k< n} ,

A, = {A =A"ouvv" A" e AV v e {:I:l}”}

for given o € (0, 1].

@ Note: If A € A,, 0 = Anin(A).

o Example:
1 07 —07 0
0.7 1 —07 0
A=1_07 —o7 1 o (@=03)
0 0 0 1



Contributions
RPCD Upper Bound

Theorem 3.3 (RPCD Upper Bound)

For an initial point o € R™, let @k be the output of RPCD after K epochs. If
A€ A, and o # 0,

Jim_ (W)Ks max{(l - %)n (1- %)2”} .

@ This upper bound matches the lower bound for RCD in Theorem 3.1.




Contributions
Stronger RCD Lower Bound

Theorem 3.4 (Stronger RCD Lower Bound)

Let A € A,. For an initial point &y € R", let 1 be the output of RCD after T’
iterates. Then, except for a Lebesgue measure zero set of initial points,

- (E o] )Z L1, 0of

T 500 ||zol|? n n

@ This theorem provides a tighter lower bound for RCD specifically in the class

As.
@ This bound is strictly larger than RPCD's upper bound from Theorem 3.3.



Contributions

RCD vs RPCD: Bounds
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Figure: Theoretical convergence bounds of RCD and RPCD.



Conjecture
RCD vs RPCD

Conjecture 4.1

For an initial point xo € R", let @k be the output of RPCD after K epochs. If
€ (0,1], A € St with Amin(A) = o, and xg # 0, then

1

o (B =me{ (- 2):0-97}

@ We conjecture that RPCD is faster than RCD for all quadratic functions with
positive definite Hessian.




Conclusion

RCD vs RPCD

@ Main Result: RPCD achieves a strictly better contraction rate than RCD on

quadratics with permutation-invariant structures.
e Significance: First theoretical result showing RPCD’s advantage over RCD.

@ Open Question: Does this advantage extend to all positive definite matrices?



