Provable Benefit of Random Permutations over Uniform Sampling in Stochastic Coordinate Descent

Donghwa Kim Jaewook Lee Chulhee Yun

Kim Jaechul Graduate School of AI, KAIST

ICML 2025

- Coordinate Descent (CD):
 - Updates one coordinate at a time.
 - Efficient for high-dimensional / large-scale problems.
- Random Coordinate Descent (RCD):
 - Selects a coordinate randomly with replacement at each iteration.
- Random-Permutation Coordinate Descent (RPCD):
 - Generates a random permutation without replacement at each epoch.

Figure: Illustration of the difference between RCD and RPCD update orders.

Introduction

Gap between Practice and Theory

Empirical Observations:

RPCD often outperforms RCD.

Theoretical Gap:

• Lack of rigorous proof for RPCD's superiority over RCD.

• Fundamental Question:

• Can we provide a theoretical explanation for RPCD's faster convergence?

Figure: Empirical performance comparison of RCD and RPCD on a quadratic function.

• Problem: Unconstrained quadratic minimization

$$\min_{\boldsymbol{x}} f(\boldsymbol{x}) := \frac{1}{2} \boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x},$$

where the Hessian $A \in \mathbb{S}^n_+$ is a positive definite matrix.

- ullet We define $\sigma:=\lambda_{\min}(oldsymbol{D}^{-1}oldsymbol{A})$ ($oldsymbol{D}$ is the diagonal part of $oldsymbol{A}$).
- Without loss of generality, we assume that ${\bf A}$ is unit-diagonal (i.e., $a_{ii}=1$ for all i). In this case, ${\bf D}={\bf I}$, so $\sigma=\lambda_{\min}({\bf A})$.

Theorem 3.1 (RCD Lower Bound)

For an initial point $x_0 \in \mathbb{R}^n$, let x_T be the output of *RCD* after T iterates. Then, except for a Lebesgue measure zero set of initial points,

$$\lim_{T \to \infty} \left(\frac{\mathbb{E}\left[\|\boldsymbol{x}_T\|^2 \right]}{\|\boldsymbol{x}_0\|^2} \right)^{\frac{1}{T}} \ge \max\left\{ \left(1 - \frac{1}{n} \right), \left(1 - \frac{\sigma}{n} \right)^2 \right\}.$$

 This theorem establishes a lower bound on the convergence rate of RCD for all quadratic functions with positive definite Hessian.

Definition

We define the class of Hessians $\mathcal{A}^{\mathsf{PI}}_{\sigma}, \mathcal{A}_{\sigma}$ as

$$\mathcal{A}_{\sigma}^{\mathsf{PI}} := \left\{ \operatorname{diag} \left\{ \sigma \mathbf{I}_{k} + (1 - \sigma) \mathbf{1}_{k} \mathbf{1}_{k}^{\mathsf{T}}, \mathbf{I}_{n-k} \right\} : 2 \leq k \leq n \right\},$$
$$\mathcal{A}_{\sigma} := \left\{ \mathbf{A} = \mathbf{A}^{\mathsf{PI}} \odot \mathbf{v} \mathbf{v}^{\mathsf{T}} : \mathbf{A}^{\mathsf{PI}} \in \mathcal{A}_{\sigma}^{\mathsf{PI}}, \mathbf{v} \in \left\{ \pm 1 \right\}^{n} \right\}$$

for given $\sigma \in (0,1]$.

- Note: If $A \in \mathcal{A}_{\sigma}$, $\sigma = \lambda_{\min}(A)$.
- Example:

$$\boldsymbol{A} = \begin{bmatrix} 1 & 0.7 & -0.7 & 0 \\ 0.7 & 1 & -0.7 & 0 \\ -0.7 & -0.7 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad (\sigma = 0.3).$$

Theorem 3.3 (RPCD Upper Bound)

For an initial point $x_0 \in \mathbb{R}^n$, let x_K be the output of *RPCD* after K epochs. If $A \in \mathcal{A}_{\sigma}$ and $x_0 \neq 0$,

$$\lim_{K \to \infty} \left(\frac{\mathbb{E}\left[\|\boldsymbol{x}_K\|^2 \right]}{\|\boldsymbol{x}_0\|^2} \right)^{\frac{1}{K}} \leq \max\left\{ \left(1 - \frac{1}{n} \right)^n, \left(1 - \frac{\sigma}{n} \right)^{2n} \right\}.$$

• This upper bound matches the lower bound for RCD in **Theorem 3.1**.

Theorem 3.4 (Stronger RCD Lower Bound)

Let $A \in \mathcal{A}_{\sigma}$. For an initial point $x_0 \in \mathbb{R}^n$, let x_T be the output of *RCD* after T iterates. Then, except for a Lebesgue measure zero set of initial points,

$$\lim_{T \to \infty} \left(\frac{\mathbb{E}\left[\|\boldsymbol{x}_T\|^2\right]}{\|\boldsymbol{x}_0\|^2} \right)^{\frac{1}{T}} \ge 1 - \frac{1}{n} + \frac{(1-\sigma)^2}{n}.$$

- \bullet This theorem provides a $tighter\ lower\ bound$ for RCD specifically in the class \mathcal{A}_{σ} .
- This bound is *strictly larger* than RPCD's upper bound from **Theorem 3.3**.

Figure: Theoretical convergence bounds of RCD and RPCD.

Conjecture 4.1

For an initial point $x_0 \in \mathbb{R}^n$, let x_K be the output of *RPCD* after K epochs. If $\sigma \in (0,1]$, $A \in \mathbb{S}^n_+$ with $\lambda_{\min}(A) = \sigma$, and $x_0 \neq 0$, then

$$\lim_{K \to \infty} \left(\frac{\mathbb{E}\left[\|\boldsymbol{x}_K\|^2 \right]}{\|\boldsymbol{x}_0\|^2} \right)^{\frac{1}{K}} \leq \max\left\{ \left(1 - \frac{1}{n} \right)^n, \left(1 - \frac{\sigma}{n} \right)^{2n} \right\}.$$

 We conjecture that RPCD is faster than RCD for all quadratic functions with positive definite Hessian.

Conclusion RCD vs RPCD

- Main Result: RPCD achieves a strictly better contraction rate than RCD on quadratics with permutation-invariant structures.
- Significance: First theoretical result showing RPCD's advantage over RCD.
- Open Question: Does this advantage extend to all positive definite matrices?