

DeFoG: Discrete Flow Matching for Graph Generation

Yiming Qin*, Manuel Madeira*, Dorina Thanou, Pascal Frossard

ICML 2025

Graph generation

Objective: sample graphs that *resemble* those in the dataset

Molecular Generation

Circuit Design

Network Modeling

Graph discrete diffusion models

Noising:

Sampling node and edge classes from categorical distributions

However...

Graph diffusion models are costly to fine-tune:

- Choices during training constrain sampling
- Hyperparameter (e.g., noise schedule) tuning requires retraining

One recipe for all graph datasets

Graph datasets are of very diverse nature

Discrete flow matching

Discrete flow matching (DFM) generalizes discrete diffusion models:

- Higher flexibility
- Improved performance on text and images

Our contribution:

We extend DFM to graph generation and achieve SOTA results

DeFoG: Applying DFM to graphs

Noising process:

Linear interpolation between data distribution p_1 and initial distribution p_0

DeFoG: Applying DFM to graphs

Denoising process:

Iteratively jump from G_t to $G_{t+\Delta t}$

Making DFM effective for graph generation

Vanilla DFM works on par with existing graph diffusion models

We leverage the increased flexibility of DFM:

$$oldsymbol{p}_{t+\Delta t|t} = oldsymbol{x}_t + oldsymbol{R}_t^{ heta} \Delta t$$

Rate matrix modifiers

- Target guidance: amplifies predicted distribution
- Stochasticity: control trajectory randomness

Time distortion

• Sampling distortion: adjusts denoising time steps

Target guidance

Target guidance: $R_t^* + \omega R_t^\omega$

- ullet Bias toward predicted clean graph with $\,\omega\,R_t^\omega$
- Validity rises sooner

Inference stage improvement

The introduced techniques lead to cumulative improvement of graph generative performance

Similar techniques are explored to achieve faster training

Leveraging and ensuring graph-specific properties

GNNs have limited representation power

DeFoG employs **RRWP features** to enhance graph generation performance

- **†** Expressivity
- **†** Efficiency

DeFoG respects graph symmetries

Sampling probability is permutation invariant

Evaluating graph generation

Synthetic graph generation

With varying topologies

Molecular graph generation

With rich node and edge classes

Conditional graph generation

With biological relevance

TLS: Tertiary Lymphoid Structure

Generating molecules with DeFoG

Molecule generated for QM9

t = 0.00

	Guacamol				
Model	Val. ↑	V.U.↑	V.U.N.↑	KL div ↑	FCD ↑
Training set	100.0	100.0	0.0	99.9	92.8
DiGress (Vignac et al., 2022)	85.2	85.2	85.1	92.9	68.0
DisCo (Xu et al., 2024)	86.6	86.6	86.5	92.6	59.7
Cometh (Siraudin et al., 2024)	<u>98.9</u>	<u>98.9</u>	<u>97.6</u>	<u>96.7</u>	<u>72.7</u>
DeFoG (10% steps)	91.7	91.7	91.2	92.3	57.9
DeFoG	99.0	99.0	97.9	97.7	73.8

Takeaways

- **DeFoG** leverages the **flexibility** of the discrete flow matching formulation
- Exploiting its design space enables improved and more efficient graph generation
- State-of-the-art performance across diverse graph benchmarks

See you at Poster #E-3004

Today at 4:30pm

