

UniMoMo: Unified Generative Modeling of 3D Molecules for *De Novo* Binder Design

Xiangzhe Kong, Zishen Zhang, Ziting Zhang, Rui Jiao, Jianzhu Ma, Wenbing Huang, Kai Liu, Yang Liu

Contents

- 1. Motivation
- 2. Challenges
- 3. Method
- 4. Experiments
- 5. Conclusion

Therapeutic Areas

Neurological diseases

Infectious diseases

. . .

Therapeutic Areas

Metabolic diseases

Cardiovascular conditions

. . .

Therapeutic Areas

Cancer

Autoimmune diseases

. . .

Small Molecule

Motivation

- √ good
- Oral bioavailability
- Cell permeability
- × bad
- Specificity
- Mutation resistance

Peptide

- √ good
- Safety (lower toxicity)
- Modulating protein-protein interactions
- × bad
- Half-life
- Tissue penetration

Antibody

- √ good
- Specificity
- Half-life
- × bad
- Cell permeability
- Oral bioavailability

Current Paradigm: Domain-Specific Models

Small Molecule

Peptide

Antibody

Reason 1 for a Unified Model: Shared Interaction Patterns

Reason 2 for a Unified Model: Shared Physical Constraints

Comparison of bond lengths in simple hydrocarbons^[5]

Molecule	Ethane	Ethylene	Acetylene	
Formula	C ₂ H ₆	C ₂ H ₄	C ₂ H ₂	
Class	alkane	alkene	alkyne	
Structure	109.40 pm H 111.17° / H H H H H	H 121.3° H 108.7 pm H 133.9 pm H	106.0 pm H—C=C—H 120.3 pm	
Hybridisation of carbon	sp ³	sp ²	sp	
C-C bond length	153.5 pm	133.9 pm	120.3 pm	
Proportion of C-C single bond	100%	87%	78%	
Structure determination method	microwave spectroscopy	microwave spectroscopy	infrared spectroscopy	

Unifying Molecules into One Generative Model

Protein

Unified Generative Model

Application Standpoint

Enables the exploration of multiple drugs spanning diverse molecular types for a single target, addressing varied therapeutic needs.

Machine Learning Standpoint

Leverages larger and more diverse datasets, better exploiting available data for learning generalizable patterns.

.

Small Molecule

Representation: Atom or Block?

Atom Level

Block Level

- Atom-level representation ignores the intrinsic hierarchical priors and leads to high complexity.
- ➤ Block-level representation lacks transferability, which is defined on atom-level details.

Diffusion: Variable Data Length

- > Different blocks have different number of atoms
- ➤ Denosing block types result in abrupt changes in the number of atoms (i.e. data length), which is not compatible with current diffusion framework.

Unified Representation – Graph of Atomic Subgraphs (Blocks)

		HO
]	Non-Canonical Amino Acid	Fragment (PS)
_,	Small Molecule	Fragment (PS)
]	Peptide/Antibody/Protein	Amino Acid
	Type	Block

Molecule Generation by **Principal Subgraph** Mining and Assembling (NeurIPS 2022)

Unified Generation – Atomic VAE

Iterative Full-Atom VAE

Compresses each block into a latent representation consisting of a low-dimensional hidden state and a spatial coordinate, then reconstruct the full-atom geometries from the latent point cloud with two-stage decoding.

- Decoder is a **short-path flow matching**, leading to high-resolution atomic reconstruction.
- The VAE creates a regular continuous space for the implementation of generative models.

Unified Generation – Latent Diffusion

Equivariant Transformer for Scalability

Peptide

- **Higher recovery** of native binding conformation (C-RMSD, L-RMSD)
- Better binding energy (dG, IMP)
- More **reasonable geometry** (Clash, JSD of dihedral angles)
- Unified model achieves much better performance than single-domain counterparts

Table 1. Results for de novo peptide design.

Model	Recovery		Empirical Energy		Rationality			Diversity			
	AAR	C-RMSD	L-RMSD	ΔG	IMP	Clash _{in}	Clash _{out}	JSD_{bb}	JSD_{sc}	Seq.	Struct.
Reference	-	-	-	-37.25	-	0.31%	0.88%	-	-	-	-
RFDiffusion	34.68%	4.69	1.88	-13.47	5.38%	0.06%	13.58%	0.273	0.798	0.155	0.616
PepFlow	35.47%	2.87	1.79	-21.71	15.22%	2.72%	4.62%	0.240	0.693	0.530	0.507
PepGLAD	38.62%	2.74	1.60	-23.12	18.28%	1.82%	1.66%	0.474	0.398	0.687	0.698
UniMoMo (single)	37.59%	2.48	1.48	-28.72	29.03%	1.53%	0.94%	0.390	0.365	0.626	0.629
UniMoMo (all)	39.45%	2.19	1.27	-34.35	40.86%	0.45%	0.93%	0.205	0.180	$\overline{0.617}$	$\overline{0.573}$

Antibody

- **Higher recovery** of native CDRs (AAR, RMSD)
- Better binding energy (IMP)
- More **reasonable geometry** (Clash, JSD of dihedral angles)
- Unified model achieves much better performance than singledomain counterparts

Table 3. Results of rationality for antibody design on CDR-H3.

Model	$Clash_{in}$	Clash _{out}	JSD_{bb}	JSD_{sc}
Reference	0.08%	0.02%	-	-
MEAN	0.96%	0.16%	0.529	-
dyMEAN	1.02%	2.98%	0.542	0.702
GeoAB-R	0.59%	0.11%	0.529	-
DiffAb	0.31%	0.25%	0.268	-
GeoAB-D	0.75%	0.07%	0.430	-
UniMoMo (single)	0.25%	0.06%	0.278	0.284
UniMoMo (all)	0.18%	0.03%	0.224	0.221

Table 2. Results of recovery for antibody design on CDR-H3.

Model	#Generation	AAR	RMSD	IMP					
Predictive									
MEAN	1	29.13%	1.87	6.67%					
dyMEAN	1	31.65%	8.21	11.86%					
GeoAB-R	1	32.04%	1.67	6.67%					
	Generative								
	1	24.60%	2.77	10.34%					
DiffAb	10	38.42%	2.08	34.48%					
	100	<u>49.74%</u>	1.46	60.34%					
	1	29.74%	1.73	6.67%					
GeoAB-D	10	38.20%	1.58	20.00%					
	100	45.96%	1.50	40.00%					
	1	20.44%	2.71	15.00%					
UniMoMo (single)	10	39.04%	1.90	35.00%					
	100	48.78%	1.39	63.33%					
	1	21.44%	2.52	13.33%					
UniMoMo (all)	10	42.05%	1.44	41.67%					
	100	52.34%	1.04	65.00%					

Small Molecule

Table 4. Overall comparisons for de novo small molecule design.

Model	substruct. 0.2	Chem. 0.2	Interact. 0.4	Geom. 0.2	Weighted Score	Rank
LIGAN	1.13	1.40	4.27	1.25	8.05	6
3DSBDD	1.13	1.60	2.23	0.70	5.67	9
GraphBP	0.17	1.50	0.37	0.10	2.13	14
Pocket2Mol	0.73	1.25	2.83	0.70	5.52	10
TargetDiff	1.77	1.50	3.50	1.70	8.47	5
DiffSBDD	0.77	1.75	1.20	0.95	4.67	12
DiffBP	0.27	1.10	2.10	1.35	4.82	11
FLAG	0.70	1.40	1.40	0.60	4.10	13
D3FG	1.47	2.25	1.80	0.70	6.22	8
DecompDiff	1.90	1.80	2.50	1.80	8.00	7
MolCRAFT	1.93	1.55	3.93	2.20	9.62	2
VoxBind	1.53	2.00	3.83	2.00	9.37	$\frac{2}{3}$
UniMoMo (single)	2.23	2.15	2.70	1.95	9.03	4
UniMoMo (all)	2.27	2.25	3.47	2.20	10.38	1

- Better fidelity to natural substructures
- Better chemical properties
- Good interaction patterns
- More reasonable geometry
- Best overall scores
- Unified model achieves much better performance than single-domain counterparts

Case Study on GPCR

- Good empirical binding energy distribution for different molecular types
- Mimicking peptide scaffolds to support large small molecules (red)
- Mimicking natural amino acids to form interactions (orange)

Conclusion

- ➤ UniMoMo: a unified generative model for all molecular types
- > Joint training all data from different domains helps with each other
- ➤ UniMoMo surpasses state-of-the-art models, including domain-specific models in terms of binder design
- > UniMoMo learns to borrow patterns from other domains to generate better binders

Thank you for your attention!

Paper Link

Code Link

UniMoMo: Unified Generative Modeling of 3D Molecules for *De Novo* Binder Design (ICML 2025)