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Different Types of Molecules Serve Different Purposes 

AntibodySmall Molecule

√ good

• Oral bioavailability

• Cell permeability

× bad

• Specificity

• Mutation resistance

√ good

• Safety (lower toxicity)

• Modulating protein-protein interactions

× bad

• Half-life

• Tissue penetration

√ good

• Specificity

• Half-life

× bad

• Cell permeability

• Oral bioavailability

Therapeutic Areas

Neurological diseases

Infectious diseases

…

Therapeutic Areas

Metabolic diseases

Cardiovascular conditions

…

Therapeutic Areas

Cancer

Autoimmune diseases

…
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Current Paradigm: Domain-Specific Models

AntibodySmall Molecule
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Reason 1 for a Unified Model: Shared Interaction Patterns

Protein & Small Molecule Protein & Peptide

Protein & Antibody
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Reason 2 for a Unified Model: Shared Physical Constraints
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Unifying Molecules into One Generative Model

Antibody

Peptide

Small Molecule

Fragments

Protein

Unified

Generative 

Model

Application Standpoint

Enables the exploration of multiple drugs 

spanning diverse molecular types for a single 

target, addressing varied therapeutic needs.

Machine Learning Standpoint

Leverages larger and more diverse datasets, 

better exploiting available data for learning 

generalizable patterns.

……
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Representation: Atom or Block? Diffusion: Variable Data Length

𝑥𝑗
𝑡 = 𝑊

𝑋𝑗
𝑡 ∈ ℝ14×3

𝑥𝑗
𝑡−1 = 𝐴

𝑋𝑗
𝑡−1 ∈ ℝ5×3

➢ Different blocks have different number of atoms

➢ Denosing block types result in abrupt changes in the 

number of atoms (i.e. data length), which is not 

compatible with current diffusion framework.

Atom Level Block Level

K E K
R

A
ANP

V F E I

➢ Atom-level representation ignores the intrinsic 

hierarchical priors and leads to high complexity.

➢ Block-level representation lacks transferability, which 

is defined on atom-level details.
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Unified Representation – Graph of Atomic Subgraphs (Blocks)
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Peptide

Antibody

Small Molecule

Type Block

Peptide/Antibody/Protein Amino Acid

Small Molecule Fragment (PS)

Non-Canonical Amino Acid Fragment (PS)

Molecule Generation by Principal Subgraph Mining and 

Assembling (NeurIPS 2022)



Iterative Full-Atom VAE

Compresses each block into a latent representation 

consisting of a low-dimensional hidden state and a 

spatial coordinate, then reconstruct the full-atom 

geometries from the latent point cloud with two-

stage decoding.

• Decoder is a short-path flow matching, leading 

to high-resolution atomic reconstruction.

• The VAE creates a regular continuous space for 

the implementation of generative models.
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Unified Generation – Atomic VAE
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Encoder

Block

Decoder

Full-Atom

Decoder

𝐀𝐢 ∈ ℕ𝐧𝐢

𝐗𝐢 ∈ ℝ𝐧𝐢×𝟑 𝒛𝒊 ∈ ℝ𝒉

Ԧ𝐳𝐢 ∈ ℝ𝟑
𝐁𝐢, 𝐁𝐢𝐣

C
S

C
C

N
OC

C Decoding

Block 
Type

Intialization

from 𝓝(Ԧ𝐳𝐢, 𝐈)
…

Carbon Sulfur Nitrogen Oxygen
Intra-block

Bonds
Inter-block

Bonds (predicted)
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Unified Generation – Latent Diffusion
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Encoder Forward Diffusion

Denoising Diffusion 𝝐𝜽

𝑡 = 𝑇𝑡 = 0

Block

Decoder

Full-Atom

Decoder

𝐀𝐢 ∈ ℕ𝐧𝐢

𝐗𝐢 ∈ ℝ𝐧𝐢×𝟑 𝒛𝒊 ∈ ℝ𝒉

Ԧ𝐳𝐢 ∈ ℝ𝟑
𝐁𝐢, 𝐁𝐢𝐣

C
S

C
C

N
OC

C Decoding

Block 
Type

Intialization

from 𝓝(Ԧ𝐳𝐢, 𝐈)
…

Carbon Sulfur Nitrogen Oxygen
Intra-block

Bonds
Inter-block

Bonds (predicted)
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Equivariant Transformer for Scalability
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100000

16961

6105

70498

~200K Complexes

Small Molecule Antibody

Peptide Protein Fragments

Equivariant Pretrained Transformer for Unified Geometric 

Learning on Multi-Domain 3D Molecules (preprint)
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Peptide
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• Higher recovery of native binding conformation (C-RMSD, L-RMSD)

• Better binding energy (dG, IMP)

• More reasonable geometry (Clash, JSD of dihedral angles)

• Unified model achieves much better performance than single-domain counterparts
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Antibody
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• Higher recovery of native CDRs (AAR, RMSD)

• Better binding energy (IMP)

• More reasonable geometry (Clash, JSD of dihedral angles)

• Unified model achieves much better performance than single-

domain counterparts
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Small Molecule
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• Better fidelity to natural substructures

• Better chemical properties

• Good interaction patterns

• More reasonable geometry

• Best overall scores

• Unified model achieves much better 

performance than single-domain 

counterparts
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Case Study on GPCR

ChallengesMotivation Method ConclusionExperiments

• Good empirical binding energy distribution for different 

molecular types

• Mimicking peptide scaffolds to support large small 

molecules (red)

• Mimicking natural amino acids to form interactions

(orange)
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Conclusion

TaskIntroduction Method ConclusionExperiments

➢ UniMoMo: a unified generative model for all molecular types

➢ Joint training all data from different domains helps with each other

➢ UniMoMo surpasses state-of-the-art models, including domain-specific models in 

terms of binder design

➢ UniMoMo learns to borrow patterns from other domains to generate better binders



Thank you for your attention!

UniMoMo: Unified Generative Modeling of 3D Molecules for De Novo Binder Design (ICML 2025)

Paper Link Code Link
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