

Code

Paper

The Butterfly Effect: Neural Network Training Trajectories Are Highly Sensitive to Initial Conditions

Gül Sena Altıntaş*

Devin Kwok*

Colin Raffel

***Mila

VECTOR | INSTITUT | INSTITUTE | VECTEUR

Problem

- Neural network training is unstable: even when it succeeds in converging to a solution, it may not consistently reach the same solution.
- Prior work found that in the early (chaotic) phase of training, training (SGD) noise can cause the same network to diverge to disconnected minima [1, 2], as measured via barriers (Eq 1).
- Knowing whether training and fine-tuning is stable matters in practice: model averaging benefits from connected solutions, while ensembling benefits from diverse solutions.
- ? But how unstable is training, really? Is early-phase training stable to perturbations smaller than training noise, and is late-phase training unstable to perturbations larger than training noise?
- ? How does pre-training affect stability? Does stability depend on the amount of pre-training, and the specific combination of pre-training and fine-tuning tasks?
- ? Are some model architectures, task domains, or hyperparameters more stable than others?

Experiment

- Choose an initial network θ_0 (pre-trained or randomly initialized).
- Train the network until time t.
- Make two copies of the network θ_t , and perturb one by adding noise (ϵ) with magnitude σ to get $\theta_t' = \theta_t + \sigma \epsilon$.
- Train both original (θ_t) and perturbed (θ_t') copies with *identical* training noise to get θ_T and θ_T' .
- Measure similarity of θ_T and θ_T' via weight distance, barriers, barriers mod permutation, and representation similarity (CKA).
- Determine how similarity depends on the choice of $heta_0$, the perturbation time t, and the perturbation size σ .

Perturbation: $\epsilon = \frac{\hat{\epsilon} \cdot M}{\|\hat{\epsilon} \cdot M\|_2} \sqrt{\text{Var}[\theta_0 \cdot M]}$

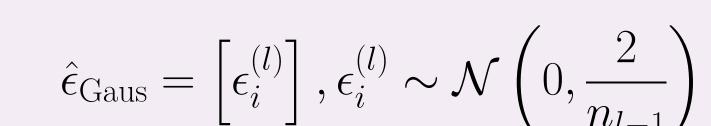
 θ_T^*

An extra SGD step with newly-sampled data

$$\hat{\epsilon}_{\mathrm{Batch}} = \frac{1}{n} \sum_{i=1}^{b} \nabla l(x_i, y_i; \theta_t)$$

→ Mimics natural training noise

Gaussian Perturbation Random noise matching initialization scale



→ Controlled random direction

 $\sigma=0.01$ means perturbation is 1% the size of the network's weights at initialization.

References

- 1] S. Fort, G. K. Dziugaite, M. Paul, S. Kharaghani, D. M. Roy, and S. Ganguli. Deep learning versus kernel learning: an empirical study of loss landscape geometry and the time evolution of the neural tangent kernel. Advances in Neural Information Processing Systems, 33:5850--5861, 2020.
- [2] J. Frankle, G. K. Dziugaite, D. Roy, and M. Carbin. Linear mode connectivity and the lottery ticket hypothesis. In Proceedings of the 37th International Conference on Machine Learning, volume 119, pages 3259--3269. PMLR, 2020.
- [3] A. H. Williams, E. Kunz, S. Kornblith, and S. Linderman. Generalized shape metrics on neural representations. In Advances in Neural Information Processing Systems, volume 34, pages 4738--4750, 2021.

Tiny early perturbations cause neural network training to diverge.

🌞 University of Toronto 💮 🦂 McGill University 💛 Vector Institute 💛 Mila - Quebec AI Institute

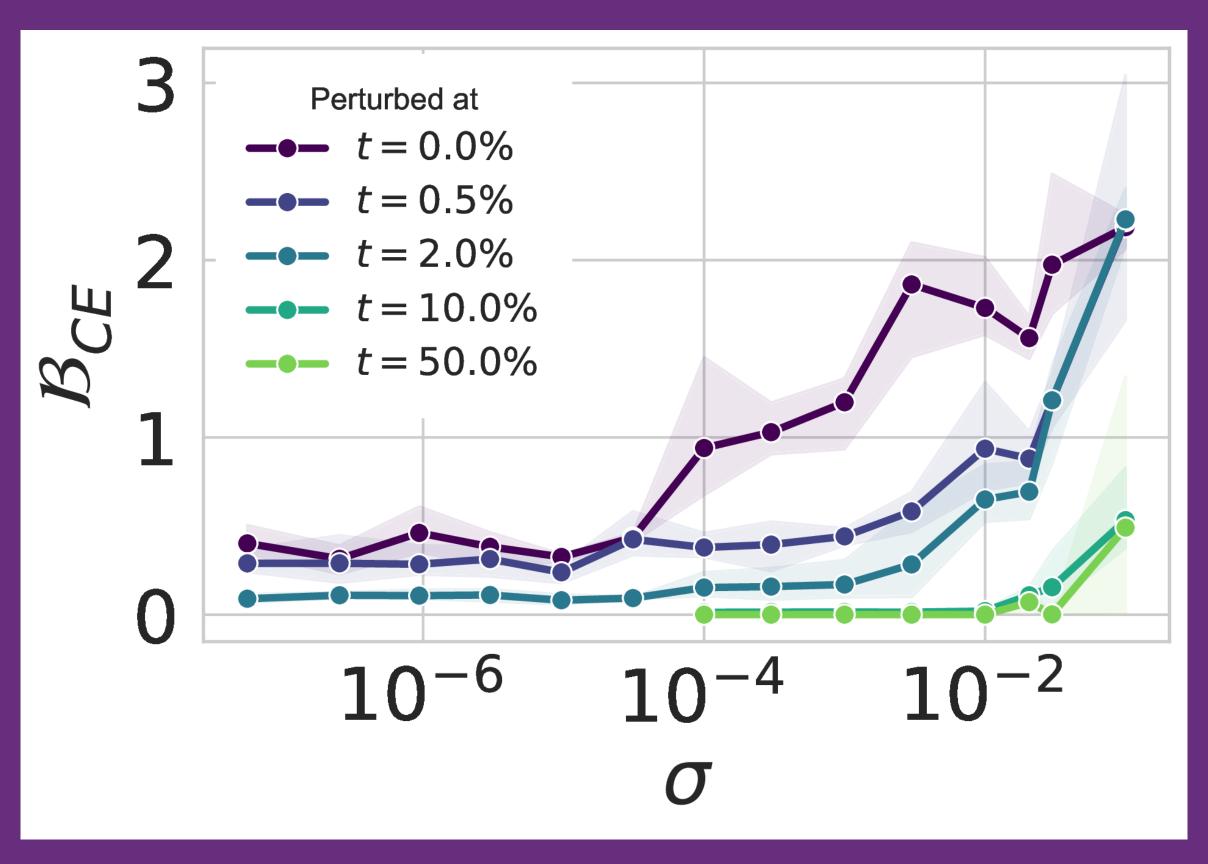


Figure 1. Barriers (cross-entropy loss on training data) at time T after training, versus perturbation magnitude, where $\sigma=1$ is the network's scale at initialization, and colors indicate the perturbation time t.

- Perturbing as little as a single weight at initialization causes large barriers (left points).
- ullet Small perturbations (0.01% of initialization) are sufficient for divergence in early training.
- Instability to small perturbations *drops rapidly* within the first 2% of training time (teal).
- ullet Only very large perturbations ($oldsymbol{10}\%$ of initialization scale) cause networks to diverge after 50% of training time (rightmost points).
- Direction independence: networks are equally unstable to Gaussian and batch perturbations early in training, but more stable to Gaussian than batch perturbations late.

Measuring Functional Dissimilarity

- L^2 divergence: distance between weights $\|\theta_T \theta_T'\|_2$
- Barriers: maximum increase in loss/error along the linear path between the weights

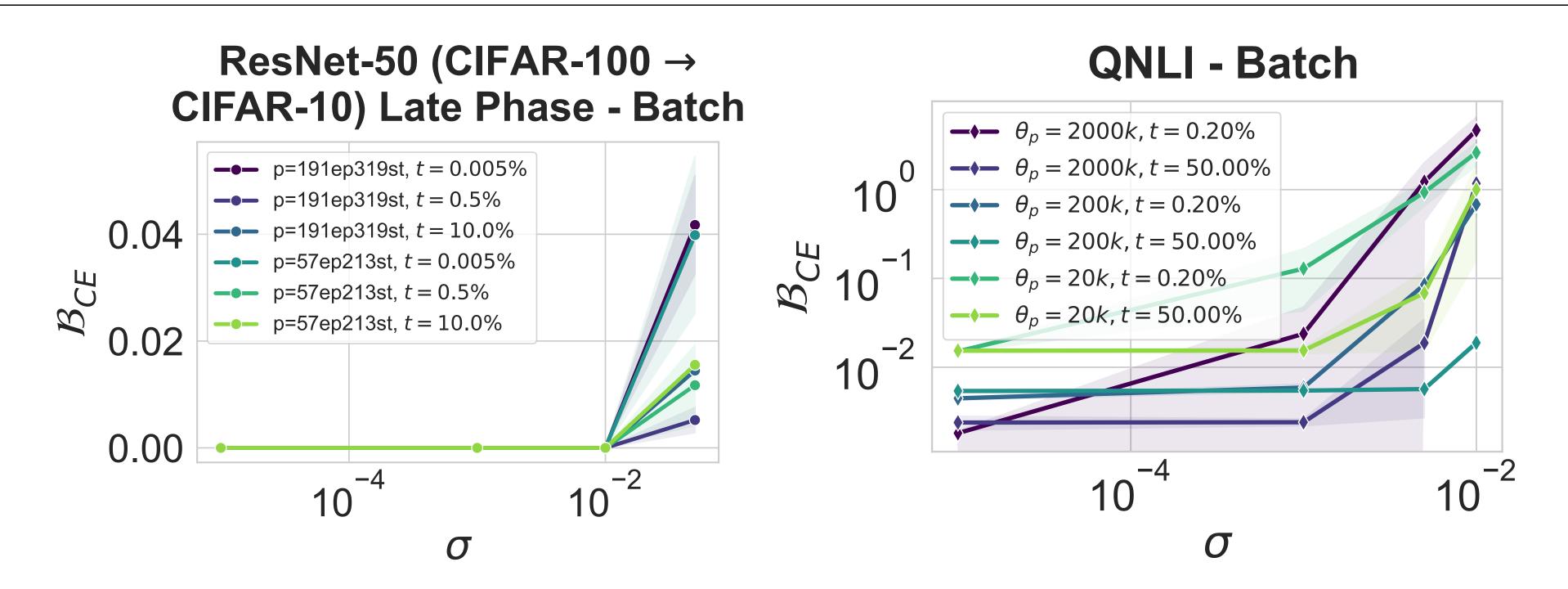
$$B(\theta_T, \theta_T') \coloneqq \sup_{\alpha \in (0,1)} \ell\left(x, y; \alpha\theta_T + (1-\alpha)\theta_T'\right) - \alpha\ell\left(x, y; \theta_T\right) - (1-\alpha)\ell\left(x, y; \theta_T'\right). \tag{1}$$

- Barriers mod permutation: $B(\theta_T, P\theta_T')$, where P is a permutation minimizing $\|\theta_T P\theta_T'\|_2$.
- Representation similarity: measures cross correlation between the penultimate hidden outputs of two networks using Angular Centered Kernel Alignment (Angular CKA) [3]

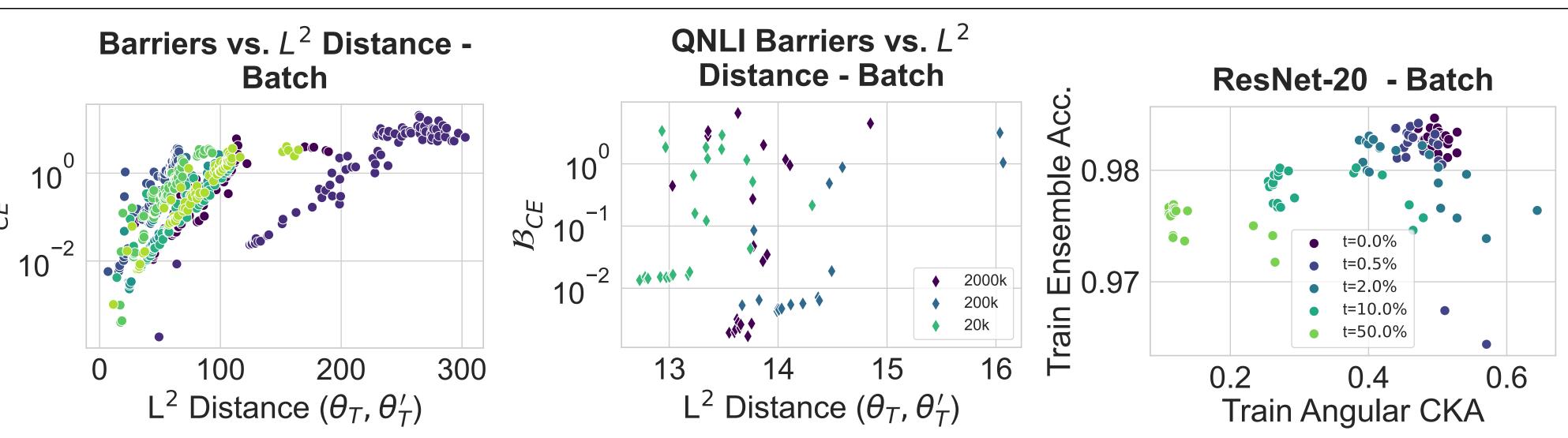
$$d_{\text{CKA}}(\theta_T, \theta_T')) = \text{CKA}\left[f_{L-1}(\theta_T), f_{L-1}(\theta_T')\right], \qquad \text{CKA}(\mathbf{X}, \mathbf{Y}) = \arccos\left(\frac{\text{HSIC}(\mathbf{X}, \mathbf{Y})}{\text{HSIC}(\mathbf{X}, \mathbf{X}) \text{HSIC}(\mathbf{Y}, \mathbf{Y})}\right), \quad (2)$$

where HSIC is the Hilbert-Schmidt Independence Criterion.

The Pre-training Paradox



- Vision—ResNet: ResNet-50 models trained and fine-tuned from CIFAR-100 to CIFAR-10 (and vice versa) become *more* stable with more pre-training (left, Figure 5 in paper).
- NLP—Transformer: on some fine-tuning tasks, BERT & OLMo become less stable with more pre-training (right, Figure 5 and Appendices D.3-D.4 in the paper).
- Vision Transformers: for pre-trained ViT models, extra pre-training on ImageNet-1K reduces CIFAR-100 fine-tuning stability by an order of magnitude (Appendix D.2).
- Hypothesis: over-training on pre-training data causes "catastrophic overfitting".



- Weight distance and functional dissimilarity are related in some settings but not others (Figure 7): barriers correlate exponentially with L^2 divergence in vision (left) but not NLP (middle).
- Counter to linearized dynamics, L^2 and barriers do not grow exponentially over training (Figure 6).
- Representation similarity correlates with barriers (Figure 3, Appendix C.4) and ensemble accuracy, indicating that instability can increase model diversity (right).

Hyperparameters Matter

Warm-up, larger batch sizes, and wider networks *enhance* stability, while Adam and weight decay degrade it (Figure 4 and Appendix C.3 in the paper).

Even combining the best settings cannot eliminate instability at initialization!