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%4’ Problem

- Neural network training is unstable: even when it succeeds 1n converging to a solution, it may
not consistently reach the same solution.

- Prior work found that in the early (chaotic) phase of training, training (SGD) noise can cause the
same network to diverge to disconnected minima [1, 2], as measured via barriers (Eq 1).

- Knowing whether training and fine-tuning is stable matters in practice: model averaging benetfits
from connected solutions, while ensembling benefits from diverse solutions.

? But how unstable is training, really? Is early-phase training stable to perturbations smaller than
training noise, and is late-phase training unstable to perturbations larger than training noise?

2 How does pre-training affect stability? Does stability depend on the amount of pre-training, and
the specific combination of pre-training and fine-tuning tasks?

» Are some model architectures, task domains, or hyperparameters more stable than others?

., Experiment

- Choose an initial network 6, (pre-trained or randomly initialized).
- Train the network until time ¢.

- Make two copies of the network 6;, and perturb one by adding
noise (e) with magnitude o to get 0, = 6; + oe=.

- Train both original (6;) and perturbed () copies with identical
training noise to get 67 and 6.

- Measure similarity of 67 and ¢’ via weight distance, barriers,
barriers mod permutation, and representation similarity (CKA).

- Determine how similarity depends on the choice of 6, the
perturbation time ¢, and the perturbation size o.

Perturbation: ¢ = 77/ Var(f - M]
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An extra SGD step with newly-sampled data
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— Mimics natural training noise — Controlled random direction

o = 0.01 means perturbation is 1% the size of the network's weights at initialization.
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Figure 1. Barriers (cross-entropy loss on training data) at time 1" after training, versus perturbation magnitude,
where o = 1 is the network’s scale at initialization, and colors indicate the perturbation time ¢.

. Perturbing as little as a single weight at initialization causes large barriers (left points).
. Small perturbations (0.01% of initialization) are sufficient for divergence in early training.
. Instability to small perturbations drops rapidly within the first 2% of training time (teal).

. Only very large perturbations (10% of initialization scale) cause networks to diverge after
50% of training time (rightmost points).

. Direction independence: networks are equally unstable to Gaussian and batch
perturbations early in training, but more stable to Gaussian than batch perturbations late.

%, Measuring Functional Dissimilarity

- L divergence: distance between weights ||07 — 0%
- Barriers: maximum increase in loss/error along the linear path between the weights

B(07,07) = sup £(x,y;abr+ (1 —a)b)) — ol (x,y;07) — (1 — )l (x,y;07) . (1)
ae(0,1)

- Barriers mod permutation: B(0r, Pf’.), where P is a permutation minimizing ||6r — P6/||-.

- Representation similarity: measures cross correlation between the penultimate hidden
outputs of two networks using Angular Centered Kernel Alignment (Angular CKA) [3]

HSIC(X,Y)
d 0. 607)) = CKAI[fr_,(6 (0! KAX.Y) = ’
where HSIC is the Hilbert-Schmidt Independence Criterion.
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- Vision—ResNet: ResNet-50 models trained and fine-tuned from CIFAR-100 to CIFAR-10 (and
vice versa) become more stable with more pre-training (left, Figure 5 in paper).

- NLP—Transformer: on some fine-tuning tasks, BERT & OLMo become less stable with more
pre-training (right, Figure 5 and Appendices D.3-D.4 in the paper).

- Vision Transformers: for pre-trained ViT models, extra pre-training on ImageNet-1K reduces
CIFAR-100 fine-tuning stability by an order of magnitude (Appendix D.2).

- Hypothesis: over-training on pre-training data causes "catastrophic overfitting".
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- Weight distance and functional dissimilarity are related in some settings but not others
(Figure 7): barriers correlate exponentially with L? divergence in vision (left) but not NLP (middle).

- Counter to linearized dynamics, L? and barriers do not grow exponentially over training (Figure 6).

- Representation similarity correlates with barriers (Figure 3, Appendix C.4) and ensemble
accuracy, indicating that instability can increase model diversity (right).

Warm-up, larger batch sizes, and wider networks enhance stability, while Adam and weight decay
degrade i1t (Figure 4 and Appendix C.3 in the paper).

Even combining the best settings cannot eliminate instability at initialization!
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