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Problem

Neural network training is unstable: even when it succeeds in converging to a solution, it may
not consistently reach the same solution.

Prior work found that in the early (chaotic) phase of training, training (SGD) noise can cause the
same network to diverge to disconnected minima [1, 2], as measured via barriers (Eq 1).

Knowing whether training and fine-tuning is stable matters in practice: model averaging benefits
from connected solutions, while ensembling benefits from diverse solutions.

? But how unstable is training, really? Is early-phase training stable to perturbations smaller than
training noise, and is late-phase training unstable to perturbations larger than training noise?

? How does pre-training affect stability? Does stability depend on the amount of pre-training, and
the specific combination of pre-training and fine-tuning tasks?

? Are some model architectures, task domains, or hyperparameters more stable than others?

Experiment

Choose an initial network ✓0 (pre-trained or randomly initialized).

Train the network until time t.

Make two copies of the network ✓t, and perturb one by adding
noise (✏) with magnitude � to get ✓0t = ✓t + �".

Train both original (✓t) and perturbed (✓0t) copies with identical
training noise to get ✓T and ✓0T .

Measure similarity of ✓T and ✓0T via weight distance, barriers,
barriers mod permutation, and representation similarity (CKA).

Determine how similarity depends on the choice of ✓0, the
perturbation time t, and the perturbation size �.

Perturbations
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An extra SGD step with newly-sampled data
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Random noise matching initialization scale
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! Controlled random direction

� = 0.01 means perturbation is 1% the size of the network's weights at initialization.
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Tiny early perturbations cause
neural network training to diverge.

Figure 1. Barriers (cross-entropy loss on training data) at time T after training, versus perturbation magnitude,
where � = 1 is the network’s scale at initialization, and colors indicate the perturbation time t.

• Perturbing as little as a single weight at initialization causes large barriers (left points).

• Small perturbations (0.01% of initialization) are sufficient for divergence in early training.

• Instability to small perturbations drops rapidly within the first 2% of training time (teal).

• Only very large perturbations (10% of initialization scale) cause networks to diverge after
50% of training time (rightmost points).

• Direction independence: networks are equally unstable to Gaussian and batch
perturbations early in training, but more stable to Gaussian than batch perturbations late.

Measuring Functional Dissimilarity

L2 divergence: distance between weights k✓T � ✓0Tk2
Barriers: maximum increase in loss/error along the linear path between the weights

B(✓T , ✓
0
T ) := sup

↵2(0,1)
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Barriers mod permutation: B(✓T , P✓0T ), where P is a permutation minimizing k✓T � P✓0Tk2.
Representation similarity: measures cross correlation between the penultimate hidden
outputs of two networks using Angular Centered Kernel Alignment (Angular CKA) [3]
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where HSIC is the Hilbert-Schmidt Independence Criterion.

The Pre-training Paradox

Vision—ResNet: ResNet-50 models trained and fine-tuned from CIFAR-100 to CIFAR-10 (and
vice versa) become more stable with more pre-training (left, Figure 5 in paper).

NLP—Transformer: on some fine-tuning tasks, BERT & OLMo become less stable with more
pre-training (right, Figure 5 and Appendices D.3-D.4 in the paper).

Vision Transformers: for pre-trained ViT models, extra pre-training on ImageNet-1K reduces
CIFAR-100 fine-tuning stability by an order of magnitude (Appendix D.2).

Hypothesis: over-training on pre-training data causes "catastrophic overfitting".

Divergence & Representation Similarity

Weight distance and functional dissimilarity are related in some settings but not others
(Figure 7): barriers correlate exponentially with L2 divergence in vision (left) but not NLP (middle).

Counter to linearized dynamics, L2 and barriers do not grow exponentially over training (Figure 6).

Representation similarity correlates with barriers (Figure 3, Appendix C.4) and ensemble
accuracy, indicating that instability can increase model diversity (right).

Hyperparameters Matter

Warm-up, larger batch sizes, and wider networks enhance stability, while Adam and weight decay
degrade it (Figure 4 and Appendix C.3 in the paper).

Even combining the best settings cannot eliminate instability at initialization!
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