
Decoding Rewards in Competitive Games:
Inverse Game Theory with Entropy Regularization

Junyi Liao1, Zihan Zhu2, Ethan X. Fang1,

Zhuoran Yang3, Vahid Tarokh1

1 Department of Electrical and Computer Engineering, Duke University
2 Department of Statistics and Data Science, University of Pennsylvania

3 Department of Statistics and Data Science, Yale University

ICML 2025

Inverse Game Theory with Entropy Regularization (ICML 2025) 1 / 10



Motivation

Many real-world scenarios involve strategic interactions: markets,
cyber-security, multi-agent system, etc.

Can we infer underlying preferences (rewards) from observed agent
behavior?

We observe equilibrium behavior only (no rewards).

Our goal: infer reward functions assuming agents play a Quantal
Response Equilibrium (QRE).
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Problem & Key Challenges

Setting:

Two-player zero-sum Markov games.

Observe agents’ strategies (in the form of empirical policies).

Goal: Recover the underlying reward function that explains observed
behavior.

Main Challenges:

Non-identifiability: There may exists multiple reward functions
leading to the same QRE.

Offline Setting:
Noisy observation: Empirical policies deviate from exact QRE;
Partial coverage: observed strategies may fail to comprehensively
cover the state-action space.

High-dimensional features: Overfitting and instability when the
feature space is large.
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Our Contributions

General Framework: We study inverse reinforcement learning in
entropy-regularized Markov games under the QRE assumption.

Identifiability Theory: We characterize when the reward function is
uniquely or partially recoverable.

Efficient Estimation: We propose an algorithm that constructs
confidence sets for reward functions and verify its performance
empirically.

Statistical Guarantees: We establish finite-sample convergence
bounds for our algorithm under mild assumptions.
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Key Ideas

Goal: Recover the reward function from observed strategies in a zero-sum
Markov game under entropy regularization, which is formulated as

max
µh

min
νh

µh(·|s)⊤Qh(s, ·, ·)νh(·|s) +
1

η
H(µh(·|s))−

1

η
H(νh(·|s))

This problem is concave in µh and convex in νh.

Key Assumptions:

Agents follow the Quantal Response Equilibrium (QRE);

Rewards and transitions have linear structures:

rh(s, a, b) = ϕ(s, a, b)⊤ωh, Ph(·|s, a, b) = ϕ(s, a, b)⊤πh(·).

The QRE satisfies a group of softmax constraints (obtained by KKT
conditions for the optimization problem). Under the linear assumption,
one can transform nonlinear constraints to linear constraints.
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Methodology

Both identification and estimation crucially rely on the linear structure of
the QRE constraints to understand and estimate rewards.

1. Identification (Theoretical Task)

Assume the exact QRE (µ∗, ν∗) is known.

The reward parameter θ satisfies linear constraints[
A(ν∗)
B(µ∗)

]
θ =

[
c(µ∗)
d(ν∗)

]
Analyze when θ is uniquely or partially identifiable.

2. Estimation (Statistical Task)

Estimate QRE (µ̂, ν̂) from data.

Construct a confidence set using relaxed constraints (least squares):∥∥∥∥[A(ν̂)B(µ̂)

]
θ −

[
c(µ̂)
d(ν̂)

]∥∥∥∥2 ≤ κ
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Theory Highlights

We establish the identifiability conditions via rank conditions on
matrices comprised of features ϕ (See Proposition 3.5).

The confidence set covers all feasible parameters with high
probability, even in the partially identifiable case.

Convergence rate: O(N−1/2) in sample size N (See Theorem 3.9).
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Experiments

Synthetic Markov games with known ground-truth rewards.

Evaluate
1 the error between ground-truth rewards and estimated rewards;
2 the error between the corresponding QREs.

Empirical convergence matches theoretical guarantees.
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Takeaways

Introduced a framework for inverse reinforcement learning in
entropy-regularized Markov games.

Provided identifiability conditions and estimation guarantees.

Future: general-sum games, nonlinear setting.

Inverse Game Theory with Entropy Regularization (ICML 2025) 9 / 10



Thanks!
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