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MOTIVATION
Selective classifier
Given a classifier f : X → ∆k, the selective classifier
(f, g) at an input x is given by

(f, g)(x) :=

{
f(x) if g(x) ≥ τ,

“abstain” otherwise.
(1)

where “abstain” is triggered when the confidence
scoring function g(x) < τ ∈ R .

• selective risk w.r.t. P(x, y) is

R(f, g̃) :=
EP(x,y)

[
ℓ(f(x), y)I[g(x) ≥ τ ]

]
ϕ(f, g)

. (2)

• coverage: ϕ(f, g) = EP(x)
[
I[g(x) ≥ τ ]

]
repre-

sents the probability mass over the accepted
samples.

Area Under the Risk Coverage curve (AURC)
The AURC [1] is typically specified as an empirical
quantity from a finite sample, from which we derive
the population AURC as

AURCp(f)

= Ex̃∼P(x)
E(x,y)∼P(x,y)ℓ(f(x), y))I [g(x) ≥ g(x̃)]

Ex′∼P(x)I [g(x′) ≥ g(x̃)]
.

(3)

Problem

• Finite sample limitation: Prior works compute
AURC empirically rather than at the popu-
lation level, with little analysis of its statisti-
cal properties—estimator like SELE [2] can re-
main biased even with large sample sizes.

• Optimization gap: Few methods optimize
AURC directly, and existing estimator do
not guarantee convergence to the population
AURC.

OUR INTERPRETATION
Define function G(x) as the cumulative distribution
function(CDF) of the CSF g(x) such that

G(x) = Pr (g(x′) ≤ g (x)) =

∫
I [g(x′) ≤ g (x)] dP(x′).

Under this definition, the population AURC in
Eq. (3) is equivalent to:

AURCa(f) =

∫
α(x)ℓ(f(x), y))dP(x, y) (4)

where α(x) = − ln (1−G(x)).

• redistribution of the risk

• G(x): the population rank percentile based on
the CSF sorted in ascending order.

PROPOSED ESTIMATORS
Estimators for α(x) can be achieved via Monte
Carlo:

α̂i = Hn −Hn−ri and α̂′
i = − ln(1− ri

n+ 1
). (5)

• Both are consistent.

• α̂i upper bounds the α̂′
i, leading to

1

n

n∑
i=1

α̂′
iℓ(f(xi), yi)︸ ︷︷ ︸

ÂURC
′
p(f)

≤ 1

n

n∑
i=1

α̂iℓ(f(xi), yi)︸ ︷︷ ︸
ÂURCp(f)

.

Proposition 1 (MSE of α̂i or α̂′
i ) Both MSE(α̂i) and

MSE(α̂′
i) are asymptotically bounded by O( βi

n(1−βi)+1 ).

Proposition 2 (Convergence Rate of the estimators)
Assume that the loss function ℓ is square-integrable, the
plug-in estimators with α̂i or α̂′

i as the weight estimator,
converges at a rate of O(

√
ln(n)/n).

EXPERIMENTS & RESULTS
Datasets. CIFAR10/100, ImageNet and a text dataset i.e Amazon Reviews.
Models. pre-trained from those datasets.
Metrics. plug-in estimators with α̂ or α̂′, the SELE score [2].

(a) BERT (0/1) (b) BERT (CE)

Figure 1: (Amazon) Finite-sample estimators with 0/1 or
CE loss. We utilize a pre-trained model and randomly di-
vide the test set into batch samples of size n. Subsequently,
we compute the mean and standard deviation of various
estimators applied to these batch samples.

(a) Swin-Base (0/1) (b) Swin-Base (CE)

Figure 2: (ImageNet) MSE of finite sample estimators with
0/1 or CE loss. For each model architecture, we calculate
the MSE of the estimators using a pre-trained model on
batch samples derived from the test set.

CIFAR10 CIFAR100

Model CE SELE α̂ Est. α̂′ Est. CE SELE α̂ Est. α̂′ Est.

ResNet18 4.967±0.038 4.470±0.030 4.473±0.030 4.471±0.030 6.648±0.021 6.577±0.011 6.532±0.012 6.533±0.014

ResNet34 6.464±0.036 5.661±0.039 5.652±0.036 5.651±0.036 6.023±0.016 5.862±0.012 5.825±0.011 5.826±0.011

ResNet50 8.318±0.002 7.892±0.046 7.921±0.047 7.918±0.049 6.225±0.009 6.043±0.015 6.007±0.008 6.007±0.009

VGG16BN 7.922±0.002 7.010±0.018 7.064±0.014 7.060±0.015 10.790±0.001 10.586±0.029 10.559±0.029 10.560±0.030

VGG19BN 9.813±0.192 8.475±0.061 8.528±0.059 8.524±0.059 10.633±0.001 10.421±0.026 10.393±0.025 10.391±0.024

WideResNet28x10 4.137±0.046 3.867±0.049 3.864±0.049 3.863±0.049 5.912±0.652 5.607±0.707 5.836±0.652 5.607±0.707

Table 1: Summary of population AURCp (mean ± std, scaled by 10−2) on the test set for models fine-tuned with various
loss functions. Each entry aggregates results over five seeds using the same pre-trained model.
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CONCLUSION

• We extend empirical AURC to a true popula-
tion quantity and show it admits a reweighted-
risk interpretation.

• We propose two plug-in estimators via Monte
Carlo method and show their bias, MSE, and
an O(

√
lnn/n) convergence rate.

• Experiments demonstrate these consistent es-
timators not only outperform SELE in terms of
estimation but also serve as effective objectives
for directly fine-tuning networks to minimize
AURC.
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