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Introduction

Armijo line-search (Armijo-LS) [Armijo, 1966] is a standard method to set the step-size for

gradient descent (GD).

◦ For uniformly L-smooth functions (for which
∥∥∇2f (θ)

∥∥ ≤ L), Armijo-LS

Alleviates the need to know the global smoothness constant L.

Enables GD to adapt to the “local” smoothness and typically results in faster empirical

convergence.

◦ Previous work [Scheinberg et al., 2014, Lu and Mei, 2023, Fox and Schmidt]

✓ Propose different notions of local smoothness to formalize this intuition, and theoretically

characterize the benefit of GD-LS over GD(1/L).

× Only show that GD-LS can result in constant factor improvements over GD(1/L).

◦ This paper: Considers a class of non-uniform smooth objective functions and show that

GD-LS can result in a provably faster rate of convergence compared to GD(1/L).
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Problem Formulation

Objective: minθ∈Rd f (θ) such that f satisfies the following assumptions:

(A1) f is non-negative and twice-differentiable.

(A2) (L0, L1) non-uniform smooth, i.e.,

For all θ,
∥∥∇2f (θ)

∥∥ ≤ L0 + L1 f (θ).

For all x , y s.t. ∥x − y∥ ≤ q/L1, where q ≥ 1 is a constant, if A := 1+ eq − eq−1
q

, B := eq−1
q

,

f (y) ≤ f (x) + ⟨∇f (x), y − x⟩+ (AL0 + B L1 f (x))

2
∥y − x∥22

(A3) There exists constants ω, ν ≥ 0 s.t. for all θ, ∥∇f (θ)∥ ≤ ν f (θ) + ω.

Examples

Logistic regression satisfies (A1)-(A3) with L0 = 0, L1 = 8, ν = 8, ω = 0.

Generalized linear model with a logistic link function satisfies (A1)-(A3) with L0 = 9/16,

L1 = 9, ν = 9, ω = 1.

Softmax policy gradient objective for multi-armed bandits satisfies (A1)-(A3) with L0 = 0,

L1 = 72, ν = 24, ω = 0.

Others: Linear multi-class classification with the cross-entropy loss, 2 layer neural

networks with the exponential loss, Softmax policy gradient for tabular MDPs.
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Algorithm

Algorithm: At iteration t of GD, use back-tracking to choose the (approximately) “largest”

step-size that satisfies the Armijo condition: f (θt − ηt∇f (θt)) ≤ f (θt)− cηt ∥∇f (θt)∥22.

Lemma: If f satisfies (A1)-(A3), then, at

iteration t, GD-LS (with “exact” backtrack-

ing) returns a step-size ηt s.t.

ηt ≥ min

{
ηmax,

1

λ0 + λ1 f (θt)

}
,

where λ0 := 3 L0+L1 ω
(1−c) and λ1 := 3 L1(ν+1)

(1−c) .

• Hence, for functions satisfying (A1)-(A3), given a large ηmax, ηt increases as f (θt) decreases,

and consequently, GD-LS results in faster convergence.
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Theoretical Results – Meta Theorem

Theorem: For a fixed ϵ > 0, if f satisfies (A1)-(A3), and if for a constant R > 0,

∥∇f (θt)∥22 ≥
[f (θt)−f ∗]2

R for all iterations t ∈ [T ], then, GD-LS with ηmax = ∞ requires

T ≥


max{2Rλ1, 1}

(
f ∗

ϵ + 1
)
ln
(

f (θ0)−f ∗

ϵ

)
if f ∗ ≥ λ0

λ1
− ϵ (Case (1))

2λ0 R
ϵ +max{2Rλ1, 1}

(
f ∗

ϵ + 1
)
ln
(

f (θ0)−f ∗

ϵ

)
otherwise (Case (2))

iterations to ensure that f (θT )− f ∗ ≤ ϵ.

If L1 = 0 =⇒ λ1 = 0, GD-LS converges at an O(1/ϵ) rate matching the GD(1/L) rate for

uniformly-smooth functions.

If L0 = 0, ω = 0 =⇒ λ0 = 0, GD-LS converges at an O
(
R

(
f ∗

ϵ

)
ln
(
1
ϵ

))
rate. If

ϵ = Θ(f ∗), this implies a faster O
(
R ln

(
1
ϵ

))
compared to the O(1/ϵ) rate for GD(1/L).

In general, if λ0, λ1 ̸= 0, GD-LS has a two-phase behaviour, fast convergence until the loss

becomes smaller than the threshold (λ0

λ1
), followed by slower convergence to the minimizer.
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Theoretical Results – Convex Losses

Examples: Logistic regression, multi-class classification with the cross-entropy loss.

Corollary: For a fixed ϵ > 0, assuming f (θ) is convex and satisfies

(A1)-(A3) with L0 = 0 and ω = 0, GD-LS with ηmax = ∞, requires

T ≥ max{2λ1 ∥θ0 − θ∗∥22 , 1}
(

f ∗

ϵ + 1
)
ln
(

f (θ0)−f ∗

ϵ

)
iterations to

ensure that f (θT )− f ∗ ≤ ϵ.

• Matches the rate of normalized gradient descent [Axiotis and Sviridenko, 2023]

.

Corollary: For logistic regression on linearly separable data with mar-

gin γ, if, for all i , ∥xi∥ ≤ 1, for an initialization θ0, an ϵ ∈ (0, f (θ0)),

GD-LS with ηmax = ∞ requires T ≥ O
(

1
γ2

[
ln
(
1
ϵ

)]2)
iterations to

ensure that f (θT ) ≤ 2 ϵ.

• GD(1/L) cannot have a convergence faster than Ω(1/ϵ) [Wu et al., 2024].

• Additional result: GD with the Polyak step-size can match the linear convergence of GD-LS.
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Theoretical Results – Non-Convex Losses

Multi-armed Bandits (Exact Setting)

Corollary: Given an MAB problem with K arms and known deterministic rewards r ∈ [0, 1]K ,

consider the class of softmax policies πθ ∈ ∆K parameterized by θ ∈ RK s.t. πθ(a) ∝ exp(θ(a))

and the softmax policy gradient objective: f (θ) := r(a∗)−⟨πθ, r⟩, where a∗ := argmaxa∈[K ] r(a).

GD-LS with a uniform initialization i.e. ∀a, πθ0(a) = 1/K, c = 1
2 , ηmax = ∞ requires

T ≥ O
(
K 2 ln (1/ϵ)

)
iterations to guarantee ⟨πθT , r⟩ ≥ r(a∗)− ϵ.

Above linear rate is provably better than the Ω(1/ϵ) rate of GD(1/L) [Mei et al., 2020].

GD-LS can match the convergence rate of specialized algorithms (natural policy gradient,

normalized GD, GD with increasing step-sizes) for the softmax policy gradient objective.

Under additional assumptions, similar linear rate holds for tabular MDPs.

Additional Results:
For generalized linear model with a logistic link, GD-LS has a convergence rate better than

or equal to GD(1/L) and variants of normalized GD [Mei et al., 2021, Hazan et al., 2015].

For two layer neural networks, when minimizing the exponential loss, GD-LS can match the

linear convergence rate of normalized GD [Taheri and Thrampoulidis, 2023].
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Conclusion

For specific problems in machine learning including convex losses (logistic regression, linear

multi-class classification) and non-convex losses (softmax policy gradient, generalized

linear models), GD-LS can

either match or provably improve upon the sublinear rate of GD(1/L),

do so without relying on the knowledge of problem-dependent constants,

match the fast convergence of algorithms tailored for these problems.

Additional results:

For logistic regression on separable data, SGD with a stochastic line-search [Vaswani et al.,

2019] can match the fast linear convergence of GD-LS.

The non-uniform smoothness assumption in Zhang et al. [2019] implies (A1)-(A3), and

hence our results also apply to this class of non-uniform smooth functions. This reduction

implies that GD-LS can match the convergence of adaptive methods [Vankov et al., 2024,

Gorbunov et al., 2024] for this class of non-uniform smooth functions.

Poster: Wed 16 July, 11 a.m. PDT - 1:30 p.m. PDT

Paper: https://arxiv.org/abs/2503.00229

Contact: vaswani.sharan@gmail.com, babanezhad@gmail.com

7

https://arxiv.org/abs/2503.00229
vaswani.sharan@gmail.com
babanezhad@gmail.com


Conclusion

For specific problems in machine learning including convex losses (logistic regression, linear

multi-class classification) and non-convex losses (softmax policy gradient, generalized

linear models), GD-LS can

either match or provably improve upon the sublinear rate of GD(1/L),

do so without relying on the knowledge of problem-dependent constants,

match the fast convergence of algorithms tailored for these problems.

Additional results:
For logistic regression on separable data, SGD with a stochastic line-search [Vaswani et al.,

2019] can match the fast linear convergence of GD-LS.

The non-uniform smoothness assumption in Zhang et al. [2019] implies (A1)-(A3), and

hence our results also apply to this class of non-uniform smooth functions. This reduction

implies that GD-LS can match the convergence of adaptive methods [Vankov et al., 2024,

Gorbunov et al., 2024] for this class of non-uniform smooth functions.

Poster: Wed 16 July, 11 a.m. PDT - 1:30 p.m. PDT

Paper: https://arxiv.org/abs/2503.00229

Contact: vaswani.sharan@gmail.com, babanezhad@gmail.com

7

https://arxiv.org/abs/2503.00229
vaswani.sharan@gmail.com
babanezhad@gmail.com


Conclusion

For specific problems in machine learning including convex losses (logistic regression, linear

multi-class classification) and non-convex losses (softmax policy gradient, generalized

linear models), GD-LS can

either match or provably improve upon the sublinear rate of GD(1/L),

do so without relying on the knowledge of problem-dependent constants,

match the fast convergence of algorithms tailored for these problems.

Additional results:
For logistic regression on separable data, SGD with a stochastic line-search [Vaswani et al.,

2019] can match the fast linear convergence of GD-LS.

The non-uniform smoothness assumption in Zhang et al. [2019] implies (A1)-(A3), and

hence our results also apply to this class of non-uniform smooth functions. This reduction

implies that GD-LS can match the convergence of adaptive methods [Vankov et al., 2024,

Gorbunov et al., 2024] for this class of non-uniform smooth functions.

Poster: Wed 16 July, 11 a.m. PDT - 1:30 p.m. PDT

Paper: https://arxiv.org/abs/2503.00229

Contact: vaswani.sharan@gmail.com, babanezhad@gmail.com

7

https://arxiv.org/abs/2503.00229
vaswani.sharan@gmail.com
babanezhad@gmail.com


Conclusion

For specific problems in machine learning including convex losses (logistic regression, linear

multi-class classification) and non-convex losses (softmax policy gradient, generalized

linear models), GD-LS can

either match or provably improve upon the sublinear rate of GD(1/L),

do so without relying on the knowledge of problem-dependent constants,

match the fast convergence of algorithms tailored for these problems.

Additional results:
For logistic regression on separable data, SGD with a stochastic line-search [Vaswani et al.,

2019] can match the fast linear convergence of GD-LS.

The non-uniform smoothness assumption in Zhang et al. [2019] implies (A1)-(A3), and

hence our results also apply to this class of non-uniform smooth functions. This reduction

implies that GD-LS can match the convergence of adaptive methods [Vankov et al., 2024,

Gorbunov et al., 2024] for this class of non-uniform smooth functions.

Poster: Wed 16 July, 11 a.m. PDT - 1:30 p.m. PDT

Paper: https://arxiv.org/abs/2503.00229

Contact: vaswani.sharan@gmail.com, babanezhad@gmail.com 7

https://arxiv.org/abs/2503.00229
vaswani.sharan@gmail.com
babanezhad@gmail.com


References i

Larry Armijo. Minimization of functions having Lipschitz continuous first partial derivatives. Pacific Journal of

mathematics, 1966.

Kyriakos Axiotis and Maxim Sviridenko. Gradient descent converges linearly for logistic regression on separable

data. In International Conference on Machine Learning, pages 1302–1319. PMLR, 2023.

Curtis Fox and Mark Schmidt. Glocal smoothness: Line search can really help! In OPT 2024: Optimization for

Machine Learning.

Eduard Gorbunov, Nazarii Tupitsa, Sayantan Choudhury, Alen Aliev, Peter Richtárik, Samuel Horváth, and
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