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Background

Offline Opponent Modeling (OOM)

OOM aims to learn an agent that can dynamically adapt to opponents using only pre-collected, 

offline datasets. This paradigm enhances practicality and efficiency by removing the 

dependency on online interaction with the environment and opponents during learning stages.
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The Problem with Suboptimal Data

Previous OOM work assumes datasets are optimal (i.e., the agent plays a Best Response). 

This is often unrealistic, as real-world data is frequently suboptimal. When trained on 

suboptimal data, the performance of existing OOM algorithms deteriorates dramatically.



Contributions

Main Challenges

• Learning a workable Q-function in OOM is highly challenging. Key issues include:

(1) Complexity: The added dimensions and complexity of modeling opponents' actions.

(2) Non-stationarity: The unreliability of Q-estimates as opponents can switch policies during testing.

• Standard Offline Conservative Learning (OCL) is ineffective for OOM due to severe 

distributional shifts between offline training and testing with unseen opponents.



Contributions

Main Challenges

• Learning a workable Q-function in OOM is highly challenging. Key issues include:

(1) Complexity: The added dimensions and complexity of modeling opponents' actions.

(2) Non-stationarity: The unreliability of Q-estimates as opponents can switch policies during testing.

• Standard Offline Conservative Learning (OCL) is ineffective for OOM due to severe 

distributional shifts between offline training and testing with unseen opponents.

Our Solutions

• Propose Truncated Q-driven Instant Policy Refinement (TIPR), a simple, plug-and-play 

framework to handle suboptimal datasets in OOM.

• Introduce Truncated Q, a horizon-truncated action-value function, and Instant Policy 

Refinement (IPR) for test-time policy improvement.

• Provide theoretical justification for Truncated Q via No Maximization Bias probability analysis.



Methodology

TIPR is a plug-and-play framework that adds two steps to existing OOM algorithms:

(1) Truncated Q Training: Learn a horizon-truncated, in-context Q-function from the 

offline dataset. (2) Instant Policy Refinement (IPR): Use the Truncated Q at test-time to 

decide when and how to refine the agent's policy.



Methodology

Truncated Q is designed to be more learnable and reliable: (1) Truncated Horizon: It 

estimates returns over a shorter, fixed horizon H to reduce cumulative error and learning 

difficulty. (2) In-Context Conditioning: It conditions on opponent data (𝐷) to provide 

reliable estimates even when opponents are non-stationary.



Methodology

During testing, IPR decides whether to refine the policy at each step: (1) It calculates a 

Refinement Condition (RC) based on Truncated Q’s estimated confidence. (2) If the RC 

is met, IPR generates a refined action by maximizing Truncated Q’s estimated value. (3)

Otherwise, it defaults to the original OOM policy's action.



Theoretical Results

We justify Truncated Q by analyzing the No Maximization Bias (NMB) Probability

𝑦 h ≔ 𝑃(argmax
𝑎1

෰𝑄h = argmax
𝑎1

𝔼 ෰𝐺𝑇), which is the probability that the learned Q-function 

selects the truly optimal action. 
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This probability is lower-bounded by 𝑦 h ≥ 𝑓 h 𝑔 h . 

• 𝑓 h : Empirical Risk NMB Probability, decided by model’s fitting ability (↓ as horizon h ↑). 

• 𝑔 h : Natural NMB Probability, related to environment’s reward structure (↑ as h ↑). 

This shows a trade-off, implying an optimal truncated horizon 𝐡∗ ∈ [𝟏, 𝑻] guarantees to

exist that maximizes the bound. 



Experimental Results

Main Results: (1) When pretrained on suboptimal data, all OOM baselines suffer 

significant performance loss. (2) TIPR provides stable and considerable improvements 

across all tested algorithms and dataset qualities.



Experimental Results

Ablation I: Shortening the horizon over which Q-function estimates the expected return 

can significantly reduce the learning difficulty.



Experimental Results

Ablation II: (1) Our IPR method is more effective than standard OCL, which can degrade 

performance due to distributional shifts. (2) Using Truncated Q leads to better policy 

improvement than using a full-horizon Original Q, which often fails catastrophically.



Experimental Results

Ablation III: The choice of the horizon H is a tunable parameter. An optimal H exists for 

different environments; making H too large H can be detrimental, approaching the poor 

performance of the Original Q.



Thank You for Watching!
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