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Spontaneous Symmetry Breaking (SSB)

▪ SSB offers a unified framework for modeling diverse phenomena involving phase transitions.
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Spontaneous Symmetry Breaking (SSB)

▪ SSB offers a unified framework for modeling diverse phenomena involving phase transitions.

Symmetry breaking in generative models [3]
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SSB as a bifurcation

▪ A representative example is a 2D non-linear oscillator which undergoes a bifurcation at μ = 0:

μ = -0.5 μ = -0.1 μ = +0.1 μ = +0.5

model parameter (= condition, environment, …)

▪ A symmetry-breaking bifurcation induces sudden changes in the fixed points of vector fields, 

altering the stability of dynamical systems (center → saddle + 2 additional centers).

SaddleCenter Center Saddle

Center Center CenterCenter

Bifurcation (@ μ = 0) from single-well to double-well dynamics!



▪ CI-NODEs [4] combine NODEs with hypernetworks to learn parameterized dynamics:

▪ Here, θc captures the shared information across all trajectories, while ξe serves as an 

environment-specific context, analogous to the model parameter μ in physical systems.
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Context-Informed Neural ODEs (CI-NODEs)

▪ CI-NODEs [4] combine NODEs with hypernetworks to learn parameterized dynamics:

▪ Here, θc captures the shared information across all trajectories, while ξe serves as an 

environment-specific context, analogous to the model parameter μ in physical systems.

▪ In our paper, we employed CI-NODEs based on the Low-Rank Adaptation (LoRA) following [4]:

▪ There are many variants that can play a similar role with the LoRA-based CI-NODEs.

▪ Anyway, all of them are capable of forecasting physical systems under varying parameters by 

modulating the context vector ξ, either through adaptation or exploration.

[4] Kirchmeyer, M. et al. ICML 2022
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Bifurcation is another form of the Out-Of-Domain (OOD) problem

▪ Previous works describe OOD in dynamical systems as crossing phase space boundaries [5].

OOD in the phase space: Can the model trained on 

the third basin predict the dynamics of the first basin?
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Bifurcation is another form of the Out-Of-Domain (OOD) problem

▪ Previous works describe OOD in dynamical systems as crossing phase space boundaries [5].

▪ Bifurcations can be seen as a different kind of OOD problem: crossing parameter space boundaries.

OOD in the phase space: Can the model trained on 

the third basin predict the dynamics of the first basin?

OOD in the parameter space: Can the model 

trained on μ < 0 predict the dynamics of μ > 0? 

[5] Göring, N. et al. ICML 2024

Training

Training
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Identifying bifurcations with CI-NODEs

▪ Can this model forecast the post-bifurcation behavior by learning the pre-bifurcation data only?
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Identifying bifurcations with CI-NODEs

▪ Can this model forecast the post-bifurcation behavior by learning the pre-bifurcation data only?

▪ The used training trajectories are all single-well dynamics near (0, 0) as follows:



▪ Prediction results with CI-NODEs for the 2D example:

CI-NODEs identifies the symmetry-breaking bifurcation 

μ = -0.5 μ = +0.1 μ = +0.5 μ = +1.5

Model prediction on the 

training case (μ < 0)

Model prediction on the test cases (μ > 0)
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CI-NODEs identifies the symmetry-breaking bifurcation 

▪ Prediction results with CI-NODEs for the 2D example:

▪ The model identifies the double-well bifurcation near the critical point but fails to preserve its 

structure at higher parameter values.

▪ It is not surprising that the model identified the saddle transition, but how was it able to discover 

the symmetry-breaking double well?

μ = -0.5 μ = +0.1 μ = +0.5 μ = +1.5
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Henri Poincaré Heinz Hopf

[6] Klarreich, E. Quanta Magazine 2020

[6]

https://en.wikipedia.org/wiki/Henri_Poincar%C3%A9 https://en.wikipedia.org/wiki/Heinz_Hopf

https://en.wikipedia.org/wiki/Henri_Poincar%C3%A9
https://en.wikipedia.org/wiki/Heinz_Hopf


▪ Poincaré–Hopf theorem:

Insights from the Poincaré–Hopf theorem

Thus, any vector field on a sphere must have a total 

Poincaré index of +2, thus fixed points cannot be 

entirely removed; unlike on a torus, where they can be.

Henri Poincaré Heinz Hopf
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▪ Poincaré–Hopf theorem (closed orbits in ℝ2):

Insights from the Poincaré–Hopf theorem
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Total = 1 - 1 + 1 = +1

In a system bounded by a closed orbit, the sum of the indices of all enclosed fixed points must equal +1.
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Insights from the Poincaré–Hopf theorem

▪ The previous experimental results can be explained by the Poincaré–Hopf theorem:

(1) The model learns the global topology from training data and maintains it for μ < 1.0.

(2) In addition, the model learns the center-to-saddle transition near (0, 0) from training data.

(3) Thus, the emergence of a saddle point (-1) must be compensated by the creation of double-well 

centers (+1 + 1 = +2) so that the total index remains +1 (= -1 + 1 + 1 = +1).

(4) As the closed orbit structure collapses for μ > 1.0, the Poincaré–Hopf theorem no longer applies, 

and the system simplifies into a single saddle mode.

μ = -0.5 μ = +0.1 μ = +0.5 μ = +1.5

-1



Insights from the Poincaré–Hopf theorem

▪ The global Poincaré index reliably predicts the lifetime of the correct bifurcating behaviors.

1.01.0



Topology-Informed Machine Learning (TIML) via index matching

▪ Global topology plays a crucial role in predicting bifurcations and broken symmetries.

▪ Instead of letting the model learn it implicitly, why not regularize the global index explicitly?
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[7] Lepori, L. et al. Journal of Statistical Mechanics 2008
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▪ Global topology plays a crucial role in predicting bifurcations and broken symmetries.

▪ Instead of letting the model learn it implicitly, why not regularize the global index explicitly?

▪ Evaluations on complex Landau–Khalatnikov systems (used for modeling ferroelectric materials):

Topology-informed ML leads to faster convergence and better predictive accuracy!

Model’s global index Desired global index

Topology-Informed Machine Learning (TIML) via index matching



For more details

▪ In our paper, we provide:

(1) Exhaustive experiments with CI-NODEs for identifying bifurcations under various conditions

(2) A telling example of hallucinated bifurcation, where the model misreads the topological 

structure, producing a spurious double-well and falsely broken symmetry

(3) A formal explanation and application of the Poincaré–Hopf theorem to interpret results

(4) Identification of cusp bifurcation, a representative example in catastrophe theory

(5) A detailed description of the proposed TIML framework, including its application to the LK 

system and ablation studies
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