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Spontaneous Symmetry Breaking (SSB)

= SSB offers a unified framework for modeling diverse phenomena involving phase transitions.

Symmetry breaking in magnetism [1]
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[1] Goryachey, A. B. et al. Molecular Biology of the Cell 2017



Spontaneous Symmetry Breaking (SSB)

= SSB offers a unified framework for modeling diverse phenomena involving phase transitions.
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Spontaneous Symmetry Breaking (SSB)

= SSB offers a unified framework for modeling diverse phenomena involving phase transitions.

Symmetry breaking in magnetism [1] Symmetry breaking in generative models [3]
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SSB as a bifurcation

» Arepresentative example is a 2D non-linear oscillator

model parameter (= condition, environment, ...)

x = (4,p) = (OpH, ~0H) = (0. — ¢*)



SSB as a bifurcation

= Arepresentative example is a 2D non-linear oscillator which undergoes a bifurcation at y = 0:

model parameter (= condition, environment, ...)

x = (4,p) = (OpH, ~0H) = (0. — ¢*)
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Bifurcation (@ u = 0) from single-well to double-well dynamics!



SSB as a bifurcation

= Arepresentative example is a 2D non-linear oscillator which undergoes a bifurcation at y = 0:

model parameter (= condition, environment, ...)

x = (4,p) = (OpH, ~0H) = (0. — ¢*)
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Bifurcation (@ u = 0) from single-well to double-well dynamics!

= A symmetry-breaking bifurcation induces sudden changes in the fixed points of vector fields,
altering the stability of dynamical systems (center — saddle + 2 additional centers).



Context-Informed Neural ODEs (CI-NODESs)

= CI-NODEs [4] combine NODEs with hypernetworks to learn parameterized dynamics:
shared welghts

x(t7;%x.(0), 0. + W&) = /f (Bo)+ (gt

context vectors

= Here, 8. captures the shared information across all trajectories, while ¢, serves as an
environment-specific context, analogous to the model parameter p in physical systems.

[4] Kirchmeyer, M. et al. ICML 2022



Context-Informed Neural ODEs (CI-NODESs)

= CI-NODEs [4] combine NODEs with hypernetworks to learn parameterized dynamics:
shared welghts

x(t7;%x4(0), 0. + W& ) = /f I/x‘dt

context vectors

= Here, 6, captures the shared information across all trajectories, while ¢, serves as an
environment-specific context, analogous to the model parameter p in physical systems.

» |n our paper, we employed CI-NODEs based on the Low-Rank Adaptation (LoRA) following [4]:
0. = 0(&) = 0. +WE (dimé, < dimb =m)

= There are many variants that can play a similar role with the LoRA-based CI-NODEs.

= Anyway, all of them are capable of forecasting physical systems under varying parameters by
modulating the context vector ¢, either through adaptation or exploration.

[4] Kirchmeyer, M. et al. ICML 2022



Bifurcation is another form of the Out-Of-Domain (OOD) problem

= Previous works describe OOD in dynamical systems as crossing phase space boundaries [5].

1 “‘

OOD in the phase space: Can the model trained on
the third basin predict the dynamics of the first basin?

[5] Géring, N. et al. ICML 2024



Bifurcation is another form of the Out-Of-Domain (OOD) problem

* Previous works describe OOD in dynamical systems as crossing phase space boundaries [3].

= Bifurcations can be seen as a different kind of OOD problem: crossing parameter space boundaries.
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Identifying bifurcations with CI-NODEs

= Can this model forecast the post-bifurcation behavior by learning the pre-bifurcation data only?
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Identifying bifurcations with CI-NODEs

» Can this model forecast the post-bifurcation behavior by learning the pre-bifurcation data only?
» The used training trajectories are all single-well dynamics near (0, 0) as follows:
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CI-NODEs identifies the symmetry-breaking bifurcation

= Prediction results with CI-NODEs for the 2D example:
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CI-NODEs identifies the symmetry-breaking bifurcation

= Prediction results with CI-NODEs for the 2D example:
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» The model identifies the double-well bifurcation near the critical point but fails to preserve its
structure at higher parameter values.



CI-NODEs identifies the symmetry-breaking bifurcation

= Prediction results with CI-NODEs for the 2D example:
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= The model identifles the double-well bifurcation near the critical point but fails to preserve its
structure at higher parameter values.



CI-NODEs identifies the symmetry-breaking bifurcation

* Prediction results with CI-NODEs for the 2D example:
u=-0.5 u=+0.1

0.75

_ N \\T////
e N
0.50 1 /
&
S 0.25 1 N |
5 /i
9 0.00 f-EEEEOIIME =4 0.00 - N(COEREHR} - 0.00 1- - 0. TE A4 U Tt ‘
: A\
8 -0.251 i , //1\
S | | ]
g ——— =050+ | —— | A
o Context-informed, € = -0.100 075 ~ Context-informed, € =-0.134 g —1.0 - Context-informed, € = -0.216
i — i i~ —V. e = i g 1
-1.0 -05 0.0 0.5 1.0 -1.0 -05 0.0 0.5 1.0 -1.0 -05 0.0 0.5 1.0 -1 0 1
Canonical position (q) Canonical position (q) Canonical position (q) Canonical position (q)

= The model identifies the double-well bifurcation near the critical point but fails to preserve its
structure at higher parameter values.

= |t is not surprising that the model identified the saddle transition, but how was it able to discover
the symmetry-breaking double well?



Insights from the Poincaré—Hopf theorem

= Poincaré index:

The Poincaré index is a topological number that characterizes fixed points of vector fields.
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= Poincaré index:

The Poincaré index is a topological number that characterizes fixed points of vector fields.

0.75 0.75
)
c 050 0.50
=
GCJ 0.25 0.25 A
5
= 0.00 0.00 A
3 -0.25 -0.25 -
8 Center of orbits
S —0.50 ~0.50 . Saddle point
O ® Center of orbits = Homoclinic orbit

-0.75 . i . -0.75 ;
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

Canonical position (q) Canonical position (q)



Insights from the Poincaré—Hopf theorem

= Poincaré index:

The Poincaré index is a topological number that characterizes fixed points of vector fields.
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Insights from the Poincaré—Hopf theorem

= Poincaré—Hopf theorem:

The sum of all Poincaré indices in a vector field must equal a fixed number

Theorem 4.1. (Poincaré-Hopf Theorem) Let M be a com-
pact, oriented, smooth manifold without boundary, and let
f: M — TM be a smooth vector field on M with finitely
many isolated zeros {x7,x5,...,x; }. Then, the sum of the
Poincaré indices of f at these zeros is equal to the Euler

characteristics x(M) of M: Zle Ind(f,x}) = x(M).

Henri Poincaré Heinz Hopf

https://en.wikipedia.org/wiki/Henri_Poincar%C3%A9 https://en.wikipedia.org/wiki/Heinz_Hopf
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Insights from the Poincaré—Hopf theorem

= Poincaré—Hopf theorem:

The sum of all Poincaré indices in a vector field must equal a fixed number determined by the
global topology of the phase space manifold (= Euler characteristic), such as 0, +1, +2, and so on.

Theorem 4.1. (Poincaré-Hopf Theorem) Let M be a com- o _
pact, oriented, smooth manifold without boundary, and let Euler Charastensfic [ £)=Fasse-Spinars ~Epgss

f: M — TM be a smooth vector field on M with finitely [6]
many isolated zeros {x7,x5,...,x; }. Then, the sum of the
Poincaré indices of f at these zeros is equal to the Euler

characteristics x (M) of M: Ele Ind(f,x}) = x(M).

Henri Poincaré Heinz Hopf

L=4+2-4= 2 X=4+4-8= 0

[6] Klarreich, E. Quanta Magazine 2020

https://en.wikipedia.org/wiki/Henri_Poincar%C3%A9 https://en.wikipedia.org/wiki/Heinz_Hopf
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Insights from the Poincaré—Hopf theorem

= Poincaré—Hopf theorem:

The sum of all Poincaré indices in a vector field must equal a fixed number determined by the
global topology of the phase space manifold (= Euler characteristic), such as 0, +1, +2, and so on.

Theorem 4.1. (Poincaré-Hopf Theorem) Let M be a com- Euler Characteristic (X)=F L £
pact, oriented, smooth manifold without boundary, and let Hier EnaraerenEne ~ VRS RNIR Tl e

f: M — T M be a smooth vector field on M with finitely
many isolated zeros {x7,x5,...,x; }. Then, the sum of the
Poincaré indices of f at these zeros is equal to the Euler

characteristics x(M) of M: Ele Ind(f,x}) = x(M).

Henri Poincaré Heinz Hopf

L=4+2-4= 2 X=4+4-8= 0

Thus, any vector field on a sphere must have a total
Poincaré index of +2, thus fixed points cannot be
entirely removed; unlike on a torus, where they can be.

https://en.wikipedia.org/wiki/Henri_Poincar%C3%A9 https://en.wikipedia.org/wiki/Heinz_Hopf
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Insights from the Poincaré—Hopf theorem

= Poincaré—Hopf theorem (closed orbits in R?):

In a system bounded by a closed orbit, the sum of the indices of all enclosed fixed points must equal +1.
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= Poincaré—Hopf theorem (closed orbits in R?):

In a system bounded by a closed orbit, the sum of the indices of all enclosed fixed points must equal +1.
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Insights from the Poincaré—Hopf theorem

= Poincaré—Hopf theorem (closed orbits in R?):

In a system bounded by a closed orbit, the sum of the indices of all enclosed fixed points must equal +1.
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Insights from the Poincaré—Hopf theorem

= Poincaré—Hopf theorem (closed orbits in R?):

In a system bounded by a closed orbit, the sum of the indices of all enclosed fixed points must equal +1.
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Insights from the Poincaré—Hopf theorem

= Poincaré—Hopf theorem (closed orbits in R?):

In a system bounded by a closed orbit, the sum of the indices of all enclosed fixed points must equal +1.
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Insights from the Poincaré—Hopf theorem

= Poincaré—Hopf theorem (closed orbits in R?):

In a system bounded by a closed orbit, the sum of the indices of all enclosed fixed points must equal +1.
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Insights from the Poincaré—Hopf theorem

= The previous experimental results can be explained by the Poincaré—Hopf theorem:
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Insights from the Poincaré—Hopf theorem

= The previous experimental results can be explained by the Poincaré—Hopf theorem:
(1) The model learns the global topology from training data and maintains it for y < 1.0.
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Insights from the Poincaré—Hopf theorem

= The previous experimental results can be explained by the Poincaré—Hopf theorem:
(1) The model learns the global topology from training data and maintains it for y < 1.0.
(2) In addition, the model learns the center-to-saddle transition near (0, 0) from training data.
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Insights from the Poincaré—Hopf theorem

= The previous experimental results can be explained by the Poincaré—Hopf theorem:
(1) The model learns the global topology from training data and maintains it for y < 1.0.
(2) In addition, the model learns the center-to-saddle transition near (0, 0) from training data.

(3) Thus, the emergence of a saddle point (-1) must be compensated by the creation of double-well
centers (+1 + 1 = +2) so that the total index remains +1 (=-1+ 1+ 1 = +1).
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Insights from the Poincaré—Hopf theorem

= The previous experimental results can be explained by the Poincaré—Hopf theorem:

(1) The model learns the global topology from training data and maintains it for y < 1.0.

(2) In addition, the model learns the center-to-saddle transition near (0, 0) from training data.
(

3) Thus, the emergence of a saddle point (-1) must be compensated by the creation of double-well
centers (+1 + 1 = +2) so that the total index remains +1 (=-1+ 1+ 1 = +1).

(4) As the closed orbit structure collapses for gy > 1.0, the Poincaré—Hopf theorem no longer applies,
and the system simplifies into a single saddle mode.
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Insights from the Poincaré—Hopf theorem

* The global Poincaré index reliably predicts the lifetime of the correct bifurcating behaviors.
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Topology-Informed Machine Learning (TIML) via index matching

» Global topology plays a crucial role in predicting bifurcations and broken symmetries.
» |nstead of letting the model learn it implicitly, why not regularize the global index explicitly?

RPH(Hca Wa 66) — Hf(a 96 =+ Wge)a I‘PH) _@H%

Model's global index Desired global index



Topology-Informed Machine Learning (TIML) via index matching

* Global topology plays a crucial role in predicting bifurcations and broken symmetries.
* |nstead of letting the model learn it implicitly, why not regularize the global index explicitly?

RPH(Qca Wa 66) — Hf(a 96 =+ Wge)a I‘PH) _@H%

Model's global index Desired global index

= Evaluations on complex Landau—Khalatnikov systems (used for modeling ferroelectric materials):
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Topology-Informed Machine Learning (TIML) via index matching

* Global topology plays a crucial role in predicting bifurcations and broken symmetries.

* |nstead of letting the model learn it implicitly, why not regularize the global index explicitly?

RPH(Qca Wa 66) — Hf(a 96 =+ Wge)a I‘PH) _@H%

Model’s global index

Desired global index

= Evaluations on complex Landau—Khalatnikov systems (used for modeling ferroelectric materials):
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Topology-informed ML leads to faster convergence and better predictive accuracy!



For more details

* In our paper, we provide:
(1) Exbhaustive experiments with CI-NODEs for identifying bifurcations under various conditions

(2) A telling example of hallucinated bifurcation, where the model misreads the topological
structure, producing a spurious double-well and falsely broken symmetry

(3) A formal explanation and application of the Poincaré—Hopf theorem to interpret results
(4) lIdentification of cusp bifurcation, a representative example in catastrophe theory

(5) A detailed description of the proposed TIML framework, including its application to the LK
system and ablation studies
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