Context-Informed Neural ODEs Unexpectedly Identify Broken Symmetries: Insights from the Poincaré–Hopf Theorem

In Huh^{1,2}, Changwook Jeong^{3,4}, Muhammad Ashraful Alam¹

¹Elmore Family School of Electrical and Computer Engineering, Purdue University

²CSE Team, Semiconductor R&D Center, Samsung Electronics

³Graduate School of Semiconductor Materials and Devices Engineering, UNIST

⁴Artificial Intelligence Graduate School, UNIST

Spontaneous Symmetry Breaking (SSB)

SSB offers a unified framework for modeling diverse phenomena involving phase transitions.

Spontaneous Symmetry Breaking (SSB)

SSB offers a unified framework for modeling diverse phenomena involving phase transitions.

Symmetry breaking in magnetism [1]

Symmetry breaking in theoretical physics [2]

Spontaneous Symmetry Breaking (SSB)

SSB offers a unified framework for modeling diverse phenomena involving phase transitions.

Symmetry breaking in theoretical physics [2]

Symmetry breaking in generative models [3]

(a) Symmetry breaking in 1D diffusion model

(b) Symmetry breaking in CelebA HQ $256 \mathrm{x} 256$

[3] Raya, G. et al. NeurlPS 2023

SSB as a bifurcation

A representative example is a 2D non-linear oscillator

model parameter (= condition, environment, ...)

$$\dot{\mathbf{x}} = (\dot{q}, \dot{p}) = (\partial_p \mathcal{H}, -\partial_q \mathcal{H}) = (p, \mu q - q^3)$$

SSB as a bifurcation

• A representative example is a 2D non-linear oscillator which undergoes a bifurcation at $\mu = 0$:

model parameter (= condition, environment, ...)

$$\dot{\mathbf{x}} = (\dot{q}, \dot{p}) = (\partial_p \mathcal{H}, -\partial_q \mathcal{H}) = (p, \mathbf{p}q - q^3)$$

Bifurcation (@ μ = 0) from single-well to double-well dynamics!

SSB as a bifurcation

• A representative example is a 2D non-linear oscillator which undergoes a bifurcation at $\mu = 0$:

model parameter (= condition, environment, ...) $\dot{\mathbf{x}} = (\dot{q}, \dot{p}) = (\partial_p \mathcal{H}, -\partial_q \mathcal{H}) = (p, \mu q - q^3)$ $\mu = -0.1$ $\mu = +0.1$ $\mu = -0.5$ $\mu = +0.5$ 0.75 0.75 - 60.75 0.50 0.50 -0.50 0.50 Saddle 0.25 0.25 0.25 0.25 Saddle Center Center 0.00 0.00 0.00 0.00

Bifurcation (@ μ = 0) from single-well to double-well dynamics!

■ A symmetry-breaking bifurcation induces sudden changes in the fixed points of vector fields, altering the stability of dynamical systems (center → saddle + 2 additional centers).

Context-Informed Neural ODEs (CI-NODEs)

CI-NODEs [4] combine NODEs with hypernetworks to learn parameterized dynamics:

$$\tilde{\mathbf{x}}(t^j; \mathbf{x}_e^i(0), \theta_c + W\xi_e) = \mathbf{x}_e^i(0) + \int_0^{t^j} f(\tilde{\mathbf{x}}(t), \theta_c) + W\xi_e) \mathrm{d}t$$

• Here, θ_c captures the shared information across all trajectories, while ξ_e serves as an environment-specific context, analogous to the model parameter μ in physical systems.

Context-Informed Neural ODEs (CI-NODEs)

CI-NODEs [4] combine NODEs with hypernetworks to learn parameterized dynamics:

$$\tilde{\mathbf{x}}(t^j; \mathbf{x}_e^i(0), \theta_c + W\xi_e) = \mathbf{x}_e^i(0) + \int_0^{t^j} f(\tilde{\mathbf{x}}(t)) \underbrace{\theta_c} + W\xi_e dt$$

- Here, θ_c captures the shared information across all trajectories, while ξ_e serves as an environment-specific context, analogous to the model parameter μ in physical systems.
- In our paper, we employed CI-NODEs based on the Low-Rank Adaptation (LoRA) following [4]:

$$\theta_e = \theta(\xi_e) = \theta_c + W\xi_e \ (\dim \xi_e \ll \dim \theta = m)$$

- There are many variants that can play a similar role with the LoRA-based CI-NODEs.
- Anyway, all of them are capable of forecasting physical systems under varying parameters by modulating the context vector ξ, either through adaptation or exploration.

Bifurcation is another form of the Out-Of-Domain (OOD) problem

Previous works describe OOD in dynamical systems as crossing phase space boundaries [5].

OOD in the phase space: Can the model trained on the third basin predict the dynamics of the first basin?

Bifurcation is another form of the Out-Of-Domain (OOD) problem

- Previous works describe OOD in dynamical systems as crossing phase space boundaries [5].
- Bifurcations can be seen as a different kind of OOD problem: crossing parameter space boundaries.

OOD in the phase space: Can the model trained on the third basin predict the dynamics of the first basin?

OOD in the parameter space: Can the model trained on μ < 0 predict the dynamics of μ > 0?

Identifying bifurcations with CI-NODEs

Can this model forecast the post-bifurcation behavior by learning the pre-bifurcation data only?

Trained dynamics

Test dynamics

Identifying bifurcations with CI-NODEs

- Can this model forecast the post-bifurcation behavior by learning the pre-bifurcation data only?
- The used training trajectories are all single-well dynamics near (0, 0) as follows:

Prediction results with CI-NODEs for the 2D example:

Model prediction on the training case (μ < 0)

Model prediction on the test cases ($\mu > 0$)

Prediction results with CI-NODEs for the 2D example:

 The model identifies the double-well bifurcation near the critical point but fails to preserve its structure at higher parameter values.

Prediction results with CI-NODEs for the 2D example:

 The model identifies the double-well bifurcation near the critical point but fails to preserve its structure at higher parameter values.

Prediction results with CI-NODEs for the 2D example:

- The model identifies the double-well bifurcation near the critical point but fails to preserve its structure at higher parameter values.
- It is not surprising that the model identified the saddle transition, but how was it able to discover the symmetry-breaking double well?

Poincaré index:

The Poincaré index is a topological number that characterizes fixed points of vector fields.

Poincaré index:

The Poincaré index is a topological number that characterizes fixed points of vector fields.

Poincaré index:

The Poincaré index is a topological number that characterizes fixed points of vector fields.

Poincaré—Hopf theorem:

The sum of all Poincaré indices in a vector field must equal a fixed number

Theorem 4.1. (Poincaré–Hopf Theorem) Let \mathcal{M} be a compact, oriented, smooth manifold without boundary, and let $f: \mathcal{M} \to T\mathcal{M}$ be a smooth vector field on \mathcal{M} with finitely many isolated zeros $\{\mathbf{x}_1^*, \mathbf{x}_2^*, \dots, \mathbf{x}_k^*\}$. Then, the sum of the Poincaré indices of f at these zeros is equal to the Euler characteristics $\chi(\mathcal{M})$ of \mathcal{M} : $\sum_{i=1}^k \operatorname{Ind}(f, \mathbf{x}_i^*) = \chi(\mathcal{M})$.

Henri Poincaré

Heinz Hopf

https://en.wikipedia.org/wiki/Heinz Hopf

https://en.wikipedia.org/wiki/Henri Poincar%C3%A9

Poincaré—Hopf theorem:

The sum of all Poincaré indices in a vector field must equal a fixed number determined by the global topology of the phase space manifold (= Euler characteristic), such as 0, +1, +2, and so on.

Theorem 4.1. (Poincaré-Hopf Theorem) Let \mathcal{M} be a compact, oriented, smooth manifold without boundary, and let $f: \mathcal{M} \to T\mathcal{M}$ be a smooth vector field on \mathcal{M} with finitely many isolated zeros $\{\mathbf{x}_1^*, \mathbf{x}_2^*, \dots, \mathbf{x}_k^*\}$. Then, the sum of the Poincaré indices of f at these zeros is equal to the Euler characteristics $\chi(\mathcal{M})$ of \mathcal{M} : $\sum_{i=1}^{k} \operatorname{Ind}(f, \mathbf{x}_{i}^{*}) = \chi(\mathcal{M})$.

Henri Poincaré

Heinz Hopf

Poincaré—Hopf theorem:

The sum of all Poincaré indices in a vector field must equal a fixed number determined by the global topology of the phase space manifold (= Euler characteristic), such as 0, +1, +2, and so on.

Theorem 4.1. (Poincaré–Hopf Theorem) Let \mathcal{M} be a compact, oriented, smooth manifold without boundary, and let $f: \mathcal{M} \to T\mathcal{M}$ be a smooth vector field on \mathcal{M} with finitely many isolated zeros $\{\mathbf{x}_1^*, \mathbf{x}_2^*, \dots, \mathbf{x}_k^*\}$. Then, the sum of the Poincaré indices of f at these zeros is equal to the Euler characteristics $\chi(\mathcal{M})$ of \mathcal{M} : $\sum_{i=1}^k \operatorname{Ind}(f, \mathbf{x}_i^*) = \chi(\mathcal{M})$.

Henri Poincaré

Heinz Hopf

https://en.wikipedia.org/wiki/Heinz Hopf

Euler Characteristic (χ) = Faces + Corners - Edges

Thus, any vector field on a sphere must have a total Poincaré index of +2, thus fixed points cannot be entirely removed; unlike on a torus, where they can be.

■ Poincaré—Hopf theorem (closed orbits in \mathbb{R}^2):

• Poincaré–Hopf theorem (closed orbits in \mathbb{R}^2):

• Poincaré–Hopf theorem (closed orbits in \mathbb{R}^2):

• Poincaré–Hopf theorem (closed orbits in \mathbb{R}^2):

• Poincaré–Hopf theorem (closed orbits in \mathbb{R}^2):

■ Poincaré—Hopf theorem (closed orbits in \mathbb{R}^2):

The previous experimental results can be explained by the Poincaré—Hopf theorem:

- The previous experimental results can be explained by the Poincaré—Hopf theorem:
- (1) The model learns the global topology from training data and maintains it for μ < 1.0.

- The previous experimental results can be explained by the Poincaré—Hopf theorem:
- (1) The model learns the global topology from training data and maintains it for μ < 1.0.
- (2) In addition, the model learns the center-to-saddle transition near (0, 0) from training data.

- The previous experimental results can be explained by the Poincaré—Hopf theorem:
- (1) The model learns the global topology from training data and maintains it for μ < 1.0.
- (2) In addition, the model learns the center-to-saddle transition near (0, 0) from training data.
- (3) Thus, the emergence of a saddle point (-1) must be compensated by the creation of double-well centers (+1 + 1 = +2) so that the total index remains +1 (= -1 + 1 + 1 = +1).

- The previous experimental results can be explained by the Poincaré—Hopf theorem:
- (1) The model learns the global topology from training data and maintains it for μ < 1.0.
- (2) In addition, the model learns the center-to-saddle transition near (0, 0) from training data.
- (3) Thus, the emergence of a saddle point (-1) must be compensated by the creation of double-well centers (+1 + 1 = +2) so that the total index remains +1 (= -1 + 1 + 1 = +1).
- (4) As the closed orbit structure collapses for $\mu > 1.0$, the Poincaré–Hopf theorem no longer applies, and the system simplifies into a single saddle mode.

The global Poincaré index reliably predicts the lifetime of the correct bifurcating behaviors.

Topology-Informed Machine Learning (TIML) via index matching

- Global topology plays a crucial role in predicting bifurcations and broken symmetries.
- Instead of letting the model learn it implicitly, why not regularize the global index explicitly?

$$\mathcal{R}_{\mathrm{PH}}(\theta_c, W, \xi_e) = \| \inf(f(\cdot; \theta_c + W\xi_e), \Gamma_{\mathrm{PH}}) - \chi_{\mathrm{PH}} \|_2^2$$
Model's global index

Desired global index

Topology-Informed Machine Learning (TIML) via index matching

- Global topology plays a crucial role in predicting bifurcations and broken symmetries.
- Instead of letting the model learn it implicitly, why not regularize the global index explicitly?

$$\mathcal{R}_{\mathrm{PH}}(\theta_c, W, \xi_e) = \| \inf(f(\cdot; \theta_c + W\xi_e), \Gamma_{\mathrm{PH}}) - \chi_{\mathrm{PH}} \|_2^2$$
Model's global index

Desired global index

Evaluations on complex Landau–Khalatnikov systems (used for modeling ferroelectric materials):

Topology-Informed Machine Learning (TIML) via index matching

- Global topology plays a crucial role in predicting bifurcations and broken symmetries.
- Instead of letting the model learn it implicitly, why not regularize the global index explicitly?

$$\mathcal{R}_{\mathrm{PH}}(\theta_c, W, \xi_e) = \| \inf(f(\cdot; \theta_c + W\xi_e), \Gamma_{\mathrm{PH}}) - \chi_{\mathrm{PH}} \|_2^2$$
Model's global index

Desired global index

Evaluations on complex Landau–Khalatnikov systems (used for modeling ferroelectric materials):

Topology-informed ML leads to faster convergence and better predictive accuracy!

For more details

- In our paper, we provide:
- (1) Exhaustive experiments with CI-NODEs for identifying bifurcations under various conditions
- (2) A telling example of hallucinated bifurcation, where the model misreads the topological structure, producing a spurious double-well and falsely broken symmetry
- (3) A formal explanation and application of the Poincaré-Hopf theorem to interpret results
- (4) Identification of cusp bifurcation, a representative example in catastrophe theory
- (5) A detailed description of the proposed TIML framework, including its application to the LK system and ablation studies