

Incremental Gradient Descent with Small Epoch Counts is Surprisingly Slow on III-Conditioned Problems

Yujun Kim*, Jaeyoung Cha*, Chulhee Yun Graduate School of AI, KAIST {kyujun02, chajaeyoung, chulhee.yun}@kaist.ac.kr

Problem Setup

 $\min_{x \in \mathbb{R}^d} F(x) = \frac{1}{n} \sum_{i=1}^n f_i(x)$ Goal:

 $x_t = x_{t-1} - \eta \nabla f_{i(t)}(x_{t-1})$ Method:

- With-replacement SGD: choose $i(t) \sim Unif(\{1, ..., n\})$
- Permutation-based SGD: choose i(t) sequentially from the permutation σ_k $\sigma_1(1), \sigma_1(2), \cdots, \sigma_1(n), \qquad \sigma_2(1), \sigma_2(2), \cdots, \sigma_2(n), \qquad \cdots \qquad , \sigma_k(1), \sigma_k(2), \cdots, \sigma_k(n)$
- Incremental Gradient Descent (IGD): $\sigma_k = id_n$ (identity permutation)
- Random Reshuffling (RR): $\sigma_k \sim Unif(S_n)$ (random permutation)
- Gradient Balancing (GraB): σ_k is manually selected by previous observations

we focus on IGD—the simplest deterministic variant.

- number of components: *n*
- number of epochs: *K*
- condition number: $\kappa = L/\mu$
- asymptotic notation: $O(\cdot),\Omega(\cdot),\widetilde{O}(\cdot)$ (hide polylog terms)
- step size: η

Notation

- permutation at k-th epoch: σ_k
- initial point: $x_0 = x_0^1$
- *i*-th iterate of k-th epoch: x_i^k

Assumption

- 1. (Strong Convexity) F is μ -strongly convex.
- 2. (Smoothness) Each component function f_i is L-smooth.
- 3. (Bounded Gradient Errors, LB) For all $x \in \mathbb{R}^d$ and $i \in [n]$, $\|\nabla f_i(x) - \nabla F(x)\| \le G + P\|\nabla F(x)\|.$
- 4. (Bounded Gradients at Optimum, UB) For all $i \in [n]$, $\|\nabla f_i(x^*)\| \leq G_*$.

Key Idea

Strategy. Place the minimizer of each component function at a vertex of regular n-gon.

Result. By rotational symmetry, the iterates trace a regular n-gon.

Gaps in Existing Theory

• When K is sufficiently large ($K \gtrsim \kappa$, large epoch regime), the convergence rates of permutation-based SGD methods are well-studied:

(fast) GraB $\tilde{O}\left(\frac{1}{n^2\kappa^2}\right) < \text{RR } \tilde{O}\left(\frac{1}{n\kappa^2}\right) < \text{with-replacement SGD } \tilde{O}\left(\frac{1}{\tau}\right), \text{ IGD } \tilde{O}\left(\frac{1}{\kappa^2}\right)$ (slow)

• When K is small ($K \le \kappa$, small epoch regime), little is known:

For quadratics, RR $\tilde{O}\left(\frac{1}{nK}\right)$ = with-replacement SGD $\tilde{O}\left(\frac{1}{T}\right)$ [Safran & Shamir., 2021]

• Existing analyses either require large K, or become loose when K is small.

Prior Works	Assump.	Alg.	Conv. Rate	Note
Theorem 1 Mishchenko et al., 2020]	f_i : str. convex	RR	$\tilde{O}(\exp(-nK/\kappa) + \kappa^3/nK^2)$	gap of $\Omega(\kappa \sim \kappa n)$ to LB when $K \leq \kappa$
Theorem 2 Mishchenko et al., 2020]	f_i : convex	RR	$\tilde{O}(\exp(-K/\kappa) + \kappa^3/nK^2)$	exp. term remain large when $K \leq \kappa$
Theorem 4.6 [Liu & Zhou, 2024]	f_i : convex	RR	$\tilde{O}(\exp(-K/\kappa)/K + \kappa^2/nK^2)$	exp. term remain large when $K \leq \kappa$
Theorem 1 [Nguyen et al., 2021]	-	Any	$\tilde{O}(\kappa^3/K^2)$	require $K \gtrsim \kappa^2$
Theorem 4.6 [Liu & Zhou, 2024]	f_i : convex	Any	$\tilde{O}(\exp(-K/\kappa)/K + \kappa^2/K^2)$	exp. term remain large when $K \leq \kappa$
Theorem 1 [Lu et al., 2023]	-	GraB	$\tilde{O}(\kappa^3/n^2K^2)$	require $K \gtrsim \kappa$

Main Results in Small Epoch Regime $(\kappa/n \le K \le \kappa)$

Question. What is the convergence rate of permutation-based SGD in the small epoch regime?

As an initial step toward understanding permutation-based SGD in the small epoch regime,

 f_i shares the same Hessian: $\nabla^2 f_i(x) = \nabla^2 F(x)$

 f_i are

strongly convex

Theorem 3.1 (LB). There exists a function *F* satisfying assumption 1, 2, 3, such that for any constant step size η , IGD satisfies

$$F(x_n^K) - F(x^*) = \Omega\left(\frac{G^2}{\mu K}\right).$$

Theorem 3.3 (LB). There exists a function *F* constant step size η , IGD satisfies

$$F(x_n^K) - F(x^*) = \Omega\left(\frac{LG^2}{\mu^2} \min\left\{1, \frac{\kappa^2}{K^4}\right\}\right). \quad \text{Match when } K = \Theta(\sqrt{\kappa}) \qquad F(x_n^K) - F(x^*) = \tilde{O}\left(\frac{L^2G_*^2}{\mu^3K^2}\right).$$

 f_i can be nonconvex satisfying assumption 1, 2, 3, such that for any

$$F(x_n^K) - F(x^*) = \Omega\left(\frac{LG^2}{\mu^2}\min\left\{1,\frac{\kappa^2}{K^4}\right\}\right).$$
 Match when $K = \Theta(x)$

Theorem 3.5 (LB). There exists a function *F* satisfying assumption 1, 2, 3, such that for any constant step size η , IGD satisfies

$$F(x_n^K) - F(x^*) = \Omega\left(\frac{G^2}{L}\left(1 + \frac{L}{2\mu nK}\right)^n\right).$$

Theorem 3.2 (UB). Suppose F is 1-dimensional and satisfy assumption 1, 2, 4. Then, there exists η such that any permutation-based SGD satisfies

$$F(x_n^K) - F(x^*) = \tilde{O}\left(\frac{G_*^2}{\mu K}\right).$$

Proposition 3.4 (UB). Suppose F satisfies assumption 1, 2, 4. Then, there exists η such that any permutation-based SGD satisfies

$$F(x_n^K) - F(x^*) = \tilde{O}\left(\frac{L^2 G_*^2}{\mu^3 K^2}\right).$$

When $K = \Theta(\kappa/n)$, the rate becomes $\frac{G^2}{r}(1+c)^n$

⇒ **No polynomial upper bound exists** in this small epoch regime!

Summary

- Present convergence rates in the small epoch regime under 1 shared Hessian 2 strongly convex 3 nonconvex components.
- Present tight rates in the large epoch regime under strongly convex
 nonconvex components.
- In the small epoch regime:
 - when strongly convex, IGD converges slower than expected.
- when nonconvex, IGD can suffer exponential slowdown.