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Problem Setup

Goal:  minF ()= me
Method: Xe = Xe—1 — NV i) (Xe=1)
. : choose i(t) ~ Unif ({1, ...,n})

 Permutation-based SGD: choose i(t) sequentially from the permutation g,
0-1(1)1 0-1(2)1 Tty 0-2(1); 0-2(2)) Ty JO-k(l); O-k(z); "ty

* Incremental Gradient Descent (IGD): g, = id,, (identity permutation)
« Random Reshuffling (RR): g, ~ Unif (S,,) (random permutation)
. . 0 IS manually selected by previous observations

o1(n), o, (n), oy (n)

Gaps in Existing Theory

 When K is sufficiently large (K = k, large epoch regime), the convergence rates
of permutation-based SGD methods are well-studied:
0(+). 16D 0 (=) (slow)

0 (nlez) <RRO (nKZ)

« When K is small (K < k, small epoch regime), little is known:

(fast)

~

For quadratics, RR 0 (i) = 0 (%) [Safran & Shamir., 2021]

« Existing analyses either require large K, or become loose when K is small.

Prior Works

Theorem 1
[Mishchenko et al., 2020]

Assump. Alg. Conv. Rate Note

firstr.convex  RR  O(exp(—nK/k) + k3/nK?)  gapof Q(k ~ kn) to LBwhen K < k

Theorem 2

(Mishchenko etal, 2020] ¢ convex RR  O(exp(—K/k) + k3 /nK?) exp. term remain large when K < k
Th 4.6 ~ .
T &e;rr,ir 2024] fi: convex RR  O(exp(—K/x)/K + k*/nK?)  exp.termremain large when K < k
Theorem 1 ~ 3 ) ' 5
[Nguyen et al., 2021] Any O(K /K ) require K = k
Th 4.6 ~ .
[Liu &egﬁf,ﬁ' 2024] fi: convex Any  O(exp(—K/k)/K + k?/K?) exp. term remain large when K < k
Theorem 1 =, 3, 21,2 . =
[Lu et al., 2023] GraB O(k>/n“K=) require K < k

(Assuming F is strongly-convex and each f; is smooth; set L = 1)
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Question. What is the convergence rate of permutation-based SGD in the small epoch regime?

As an initial step toward understanding permutation-based SGD in the small epoch regime,

m

number of components: n .

* number of epochs: K

« condition number:k =L/u -

« asymptotic notation:

0('), Q('), 6() (hide polylog terms)

we focus on —the simplest deterministic variant.

step size: 7 (Strong Convexity) F is u-strongly convex.

2. (Smoothness) Each component function f; is L-smooth.

3. (Bounded Gradient Errors, LB) For all x € R* and i € [n],
IVFi(x) — VF ()l = G + P|IVF (%)l

4. (Bounded Gradients at Optimum, UB) For all i € [n],
V(DI < G

* permutation at k-th epoch: gy,
initial point: x, = x}
» i-th iterate of k-th epoch: x;°

Main Results in Small Epoch Regime (k/n < K < k)

f; shares the
same Hessian:
Vfi(x) = V2F(x)

f; are
strongly convex

f; can be
nonconvex

Theorem 3.1 (LB). There exists a function F

satisfying assumption 1, 2, 3, such that for any
constant step size n, IGD satisfies

Theorem 3.2 (UB). Suppose F is 1-dimensional

K *Y) GZ K — Gz
F(x")_F(x)_Q(,u_K>' F(xt) —F(x*) = <MK)'

Theorem 3.3 (LB). There exists a function F
satisfying assumption 1, 2, 3, such that for any
constant step size n, IGD satisfies

F(x%¥) — F(x*) = Q(Lﬂ—(;zzmin{l,;—z}).

Theorem 3.5 (LB). There exists a function F
satisfying assumption 1, 2, 3, such that for any
constant step size n, IGD satisfies

2 n
F(xX%) — F(x*) =Q(GT<1+2'L;K) )

Proposition 3.4 (UB). Suppose F satisfies
assumption 1, 2, 4. Then, there exists n such
that any permutation-based SGD satisfies

L*G?
F(xK) — F(x*) = 0 (stz)'

Match
when K = 0(Vk)

When K = 0(k/n), the rate becomes GTZ (1+ )"

= No polynomial upper bound exists in this
small epoch regime!

and satisfy assumption 1, 2, 4. Then, there exists
n such that any permutation-based SGD satisfies
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Key Idea

*  Minimizers of Components
-~ Level Curves of Components

e Initial Point
e Start of Epochs
; ¢ Final Iterate
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Strategy. Place the minimizer of each component function at a vertex
of regular n-gon.

Result. By rotational symmetry, the iterates trace a regular n-gon.

Theorem 3.2 (UB)

w== s Theorem 3.1 (LB)

Mishchenko et al. (2020) (UB)
w— » Theorem 3.3 (LB)

l wess »  Theorem 3.5 (LB)

Liu & Zhou (2024a) (UB)

‘ s« Theorem 4.1 (LB)

Theorem 4.4 {(UB)

Theorem 4.3 (LB)

Lower Bounds = = ==

Optimality Gap

Upper Bounds
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1 u VK K

Epoch

|
max{k3n?, k32}

* Present convergence rates in the small epoch regime under
(D shared Hessian (@ strongly convex (3) nonconvex components.

* Present tight rates in the large epoch regime under

(D strongly convex (2 nonconvex components.

* |nthe small epoch regime:

* when strongly convex, IGD converges slower than expected.
 when nonconvex, |GD can suffer exponential slowdown.
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