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Background Introducing JoLA Experimental Setups Results Analysis

JoLA is ...
• a new approach for low-resource fine-tuning. → Comparable to LoRA on large

datasets, and superior on small ones (e.g., 200 samples).

• a parameter-efficient approach. → Fewer trainable and active parameters than
LoRA.

• build on activation editing from interpretability. → Modify the activations of se-
lected components while keeping the rest intact.

• user friendly. → 3 lines of code, fast training.

Try Our Code (pip install jola)

# Load models
jola_model = JoLAModel.jola_from_pretrained(**jola_config["model_config"])
# Unfreeze relevant parameters
jola_model.unfreeze_jola_params()
# Train
jola_trainer.train()
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Parameter-Efficient Fine-Tuning (PEFT)

• Adapters (Houlsby et al. 2019): Learnable mo-
dules inserted after sub-layers.

• LoRA (Hu et al. 2021): Adds low-rank matrices
in parallel to Wq and Wv in attention layers.

• PEFT still modifies original weights and is not
maximally efficient: e.g., LoRA updates 0.826%
of LLaMA-3-8B’s parameters.

• The effectiveness of standard PEFT is limited in
low-resource scenarios with only a few hundred
examples.
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Activation Editing: A New Paradigm

Activation editing modifies model activations rather than weights, drastically reducing
trainable parameters (e.g., LoFIT uses just 0.0035%) and performing well even on small
datasets.

• Intervention component
• Bias term - BitFIT (Ben Zaken et al. 2022)
• MLP layers output - RED (Wu et al. 2024a)
• Hidden outputs (representation) within MLP layers - ReFT (Wu et al. 2024b)
• Attention head outputs - LoFIT (Yin et al. 2024)
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Activation Editing: A New Paradigm

Activation editing modifies model activations rather than weights, drastically reducing
trainable parameters (e.g., LoFIT uses just 0.0035%) and performing well even on small
datasets.

• Intervention Strategy
• Given an activation output z

(l,i)
t ∈ Rdl for i-th component at layer l , we apply the

transformation: z (l,i)
′

t = f (z
(l,i)
t )

• Additive: z
(l,i)′

t = z
(l,i)
t + a(l,i)

• Multiplicative: z
(l,i)′

t = m(l,i) ⊙ z
(l,i)
t

• Hybrid: z
(l,i)′

t = m(l,i) ⊙ z
(l,i)
t + a(l,i)
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What Remains Unclear for Activation Editing?

1 Which internal component yields the best intervention outcome?
• Attention head outputs are the most effective intervention targets.

2 Should we use additive, multiplicative, or hybrid operations for optimal results?
• Additive bias offsets consistently lead to greater performance improvements than mul-

tiplicative scaling.
3 Can activation editing perform well in low-resource settings (e.g., 200 samples)?

• Performance is highly sensitive to hyperparameter choices, requiring careful manual
tuning for each task.

Please refer to the detailed analysis of the results in the paper (Section 3.1, Appendix
C and Appendix F.3).

Wen Lai1,2, Alexander Fraser1,2 and Ivan Titov3,4

Joint Localization and Activation Editing for Low-Resource Fine-Tuning (ICML 2025) 7 / 25



Background Introducing JoLA Experimental Setups Results Analysis

What Remains Unclear for Activation Editing?

1 Which internal component yields the best intervention outcome?
• Attention head outputs are the most effective intervention targets.

2 Should we use additive, multiplicative, or hybrid operations for optimal results?
• Additive bias offsets consistently lead to greater performance improvements than mul-

tiplicative scaling.

3 Can activation editing perform well in low-resource settings (e.g., 200 samples)?
• Performance is highly sensitive to hyperparameter choices, requiring careful manual

tuning for each task.

Please refer to the detailed analysis of the results in the paper (Section 3.1, Appendix
C and Appendix F.3).

Wen Lai1,2, Alexander Fraser1,2 and Ivan Titov3,4

Joint Localization and Activation Editing for Low-Resource Fine-Tuning (ICML 2025) 7 / 25



Background Introducing JoLA Experimental Setups Results Analysis

What Remains Unclear for Activation Editing?

1 Which internal component yields the best intervention outcome?
• Attention head outputs are the most effective intervention targets.

2 Should we use additive, multiplicative, or hybrid operations for optimal results?
• Additive bias offsets consistently lead to greater performance improvements than mul-

tiplicative scaling.
3 Can activation editing perform well in low-resource settings (e.g., 200 samples)?

• Performance is highly sensitive to hyperparameter choices, requiring careful manual
tuning for each task.

Please refer to the detailed analysis of the results in the paper (Section 3.1, Appendix
C and Appendix F.3).

Wen Lai1,2, Alexander Fraser1,2 and Ivan Titov3,4

Joint Localization and Activation Editing for Low-Resource Fine-Tuning (ICML 2025) 7 / 25



Background Introducing JoLA Experimental Setups Results Analysis

1 Background

2 Introducing JoLA

3 Experimental Setups

4 Results

5 Analysis

Wen Lai1,2, Alexander Fraser1,2 and Ivan Titov3,4

Joint Localization and Activation Editing for Low-Resource Fine-Tuning (ICML 2025) 8 / 25



Background Introducing JoLA Experimental Setups Results Analysis

JoLA Framework: An overview

Our goal: Design a simple and general approach to dynamically learn where and how
to edit activations in low-resource settings.

Gate
g(l,i)

mg(l,i)
m

×× m(l,i)m(l,i)

.
+

××

Joint Localization and Editing (JoLA)

Gate
g(l,i)

ag(l,i)
a

z(l,i)z(l,i)

a(l,i)a(l,i)1+

Multiplicative

Additive

When the gate is 
closed (=0), 
no addition

When the gate is 
closed (=0), 

no multiplication

• z(l ,i) – original (head / MLP) activation
• a(l ,i) – additive modification
• m(l ,i) – component-wise multiplicative

modification

Each gate is just a random variable during training (no input!) and becomes a
scalar expectation at inference time.
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Gating Mechanism: Learn Sparse Edits

• Gates follow a mixed discrete-
continuous distribution, imple-
mented via the Hard Concrete
distribution (Louizos et al. 2017).

• The probability that a gate is non-
zero acts as a L0 regularizer, encoura-
ging sparsity by controlling the expected
number of active (open) gates.
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Activation Status
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a ≠ 0g(l,i)

m = 0 & g(l,i)
a ≠ 0

g(l,i)
m ≠ 0 & g(l,i)

a = 0g(l,i)
m ≠ 0 & g(l,i)

a = 0
g(l,i)

m ≠ 0 & g(l,i)
a ≠ 0g(l,i)
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a ⋅ a(l,i)
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a ⋅ a(l,i)z(l,i)′ = (1 + g(l,i)
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ii
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m ⋅ m(l,i)) ⊙ z(l,i)z(l,i)′ = (1 + g(l,i)
m ⋅ m(l,i)) ⊙ z(l,i)

• Given an activation output z
(l ,i)
t ∈ Rdl for i-th

head at layer l , the activation can be optimized
to four status during training.

1 original activation (no modification)
2 add a bias vector (additive modification)
3 add a scale vector (multiplicative modification)
4 both scale and bias vector (hybrid modification)
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Training Objectives

L(m, a, ϕ) = Lxent(m, a) + λLC (ϕ)

where,
• Lxent(·): Standard cross-entropy loss
• LC (ϕ): L0 regularizer defined as:

LC (ϕ) =
∑
l ,i

(
1 − P(g

(l ,i)
a = 0 | ϕ(l ,i)

a )

+ 1 − P(g
(l ,i)
m = 0 | ϕ(l ,i)

m )
)

• LC (ϕ) regularizes the number of open gates, encouraging the model to close gates
as training progresses.

• Most gates are closed at convergence, i.e., only a few interventions are applied.

Wen Lai1,2, Alexander Fraser1,2 and Ivan Titov3,4

Joint Localization and Activation Editing for Low-Resource Fine-Tuning (ICML 2025) 12 / 25



Background Introducing JoLA Experimental Setups Results Analysis

Gate Status During Training
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• All gates are initially open. Then, JoLA learns which components (e.g., attention
heads) to modify and how (additively or multiplicatively)

• Interestingly, multiplicative gate (gm) tends to close more frequently
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• Baselines
1 Zero-shot:LLaMA-3 and Qwen-2.5
2 PEFT method: LoRA
3 Activation editing during training:

BitFit (Ben Zaken et al. 2022),
RED (Wu et al. 2024a), ReFT (Wu
et al. 2024b), and LoFIT (Yin et al.
2024)

4 Activation editing during infe-
rence: RePE (Zou et al. 2023)

• Evaluation Setups
1 Low-resource scenario: 200 training

samples
2 Commonsense Reasoning (8 tasks),

Natural Language Understanding (14
tasks) and Natural Language Gene-
ration (4 tasks)

3 Accuracy for reasoning and under-
standing tasks, BLEU, ROUGE-L and
BERTScore for generation tasks
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Main Results

Llama-3.1-8B-Instruct

Reasoning Understanding Generation

ACC " ACC " BLEU " ROUGE-L " BERTScore "
zero shot 53.70 40.00 12.56 36.70 77.23
LoRA 66.58 42.07 13.27 36.97 77.74

BitFit 63.05 35.02 9.25 28.81 74.83
RED 46.19 37.33 11.24 32.40 76.24
RePE 63.61 35.54 8.49 27.61 74.30
ReFT 65.95 40.89 12.60 36.89 77.21
LoFIT 56.19 27.76 11.88 32.09 76.71

JoLA 70.55 47.00 17.07 40.65 80.54

Table 1: Results of the Llama-3.1-8B-Instruct model on various benchmarks.

2

ARC-c

ARC-e

BoolQ

HellaSwag

OBQA

PIQA

SIQA

WinoGrande

20

40

60

80

100

(a) LLaMA-3 on Reasoning Tasks

Biology

Business

Chemistry

Computer ScienceEconomics

Engineering

Health

History

Law

Math

Other Philosophy

Physics

Psychology

20

40

60

80

(b) LLaMA-3 on Understanding Tasks

Commen_Gen

E2E_NLG

WEB_NLG

Xsum

8

15

22

30

(c) LLaMA-3 on Generation Tasks

ARC-c

ARC-e

BoolQ

HellaSwag

OBQA

PIQA

SIQA

WinoGrande

20

40

60

80

100

(d) Qwen-2.5 on Reasoning Tasks

Biology

Business

Chemistry

Computer ScienceEconomics

Engineering

Health

History

Law

Math

Other Philosophy

Physics

Psychology

20

40

60

80

(e) Qwen-2.5 on Understanding Tasks

Commen_Gen

E2E_NLG

WEB_NLG

Xsum

10

20

30

40

(f) Qwen-2.5 on Generation Tasks

zero_shot LoRA BitFit RED RePE ReFT LoFIT JoLA

• Activation editing baselines show varying levels of success across tasks, but their
performance is often limited by sensitivity to hyperparameters and layer selection.

• JoLA consistently outperforms all baselines across all three task types, achieving
robust improvements with minimal tuning.
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Ablation Study 1: Gating Mechanism

The gating mechanism significantly enhances performance, demonstrating its effecti-
veness for both attention head and MLP layer interventions.
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Ablation Study 1: Gating Mechanism

The combination of components (attention head and MLP) with a gate mechanism
shows improvement but still underperforms compared to a single intervention. The
conclusion is in line with previous investigations.
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Ablation Study 2: Number of Gates
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(b) LLaMA-3.1
zero_shot
one Gate

two Gate• one gate: g (l ,i)
m and g

(l ,i)
a share the same gate.

• two gate: g (l ,i)
m and g

(l ,i)
a are different gates.

Although the shared gating configuration outper-
forms the zero-shot baseline, it lags behind the
configuration with separate gates, highlighting
the benefit of fine-grained control.
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Ablation Study 3: Different Head Selection Strategies
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Compared Strategies:
• SMP (Zhang et al. 2021): Trains a pruner to

rank and drop less important heads.
• DSP (Li et al. 2021): Uses Gumbel-Softmax to

select top-K heads.
• PASS (Ding et al. 2024): Applies robust optimi-

zation for deterministic sparsity.

JoLA consistently outperforms other attention
head pruning strategies, demonstrating the ef-
fectiveness of its learned, task-adaptive selection
mechanism.
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Different Data Size
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Data Size:
• small data size: 100 - 1,000 samples;
• large data size: 1,000 - 100,0000 sam-

ples;

• JoLA significantly outperforms LoRA
on small datasets (even with just 100
samples).

• JoLA remains competitive or slightly
better with 5,000–10,000 samples.

• LoRA gains a modest edge as data sca-
les to 20k–100k.
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Different Model Size
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Model Size:
• LLaMA (1B, 3B, 8B, 70B)

• JOLA consistently delivers significant
performance improvements across all
model sizes.

• larger models benefit more substantially
from JOLA’s dynamic selection mecha-
nism
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