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Problem statement
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● Assume prompts are composed of 

instructions and few-shot exemplars.

● We want to identify the prompt that 

performs best in expectation on a 

downstream task.

● Black-box optimization proxy:

Evaluate prompt on a validation set.



Taxonomy and related work
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Taxonomy
Black-box:

● Only access to model outputs via API.
● Requires query-efficient, 

derivative-free methods.

White-box:

● Full access to the internals of the LLM, 
including gradients.

● Enables gradient-based prompt 
optimization or selection.
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Static:

● A single prompt is chosen offline to 
generalize across all test instances.

● Prioritizes robustness and 
average-case performance.

Dynamic:

● Prompts are selected or adapted per 
test instance, often online.

● Allows for instance-specific reasoning 
and improved accuracy.

Selection:

● Choose the best-performing prompt 
from a (predefined) finite set.

● Emphasis is on efficient evaluation 
and ranking, not generation.

Optimization:

● Generating or refining new prompts.
● Techniques include gradient-based 

updates (in white-box) or 
evolutionary/search methods (in 
black-box).



Static black-box prompt selection: Related work
MIPROv2 (Opsahl-Ong et al., 2024)

● Combines instructions and few-shot 
exemplars from a finite prompt pool.

● Uses Tree-structured Parzen 
Estimator (TPE) with categorical 
indices.

● Limitations:
○ Lacks semantic modeling of 

prompts.
○ Evaluation not 

query-efficient; relies on 
full/random validation sets.
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EASE (Wu et al., 2024)

● Uses NeuralUCB with embeddings of 
prompt text blocks.

● (Optional) optimal transport heuristic 
to reduce exemplar space.

● Limitations:
○ Does not make use of 

separate building blocks of 
prompts.

○ Evaluation not 
query-efficient; relies on 
full/random validation sets.

TRIPLE (Shi et al., 2024)

● Uses Successive Halving (SH) and 
Generalized Successive Elimination 
(GSE).

● Employs embeddings to model 
expected performance (for GSE)

● Limitations:
○ Sensitive to initial budgets.
○ Does not make use of 

separate building blocks of 
prompts.

○ Evaluates all prompts initially, 
limiting sample-efficiency.

→ Lack of a method that is both sample-efficient and query-efficient



Overview of HbBoPs methodology
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Idea
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Sample-efficiency via BO proposal:

● Prompts are natural language, yet 
composed of building blocks.

● How can we learn a surrogate model 
mapping prompts to downstream 
performance?

→ structural-aware deep kernel Gaussian Process

Query-efficiency via Hyperband (Li et al. 2018):

● Evaluating prompts on a validation set 
results in a natural  fidelity: the number of 
validation samples.

● In contrast to HPO or NAS, the fidelity, 
however, only affects the noise of the 
objective without impacting trend.

→  adapt Hyperband to prompt selection



Structural-aware deep kernel Gaussian Process
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instruction

few-shot  
exemplar

encoder

encoder



Structural-aware deep kernel Gaussian Process
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encoded instruction

encoded few-shot exemplar

Source: The Kernel Cookbook by David Duvenaud

deep kernel GP

feature extractor

feature extractor

feature extractor

http://www.cs.toronto.edu/~duvenaud/cookbook/index.html
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Hyperband for prompt selection
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● How to determine the incumbent?
→ best performing prompt on highest fidelity 

● Purely random instances for evaluation within 
stages of a bracket vs. “fixed” random instances?
→ fixed

● Superset structures vs. no superset structure of 
instances when moving from one stage to another 
within a bracket?
→ superset structure

● Note: if LLM evaluation is close to deterministic, 
they can be cached an re-used when moving from 
one stage to another stage within a bracket



HbBoPs
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● Combine Hyperband for prompt selection 

with a BO proposal based on the 

structural-aware deep kernel GP in the 

spirit of BOHB (Falkner et al. 2018)

● Acquisition function based on EI:



Experimental setup and benchmarks
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Benchmark tasks
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● AI2’s Reasoning Challenge (ARC) - Multiple-choice question answering (Clark et al., 2018)

● GSM8K - Multi-step math problems (Cobbe et al., 2021)

● 8 tasks from BIG-bench / Instruction Induction (BBII): antonyms, larger animal, negation, second 
word letter, sentiment, object counting, orthography starts with, word unscrambling (Srivastava et al., 

2023; Honovich et al., 2023)



Prompt pool
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Instructions (5 per task):

● APE (forward mode; Zhou et al. 2023) using Claude 3 Sonnet based on 10 I/O examples.

Few-shot exemplars (50 per task):

● 25 sets of 5 I/O examples sampled from the tas’s training set.

● Each set permuted twice to test ordering sensitivity.

→ Final prompt space via Cartesian product



LLMS
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● Claude 3 Haiku

● LLAMA3 8B Instruct

● Mistral 7B Instruct



Evaluation protocol

● Evaluation budget: 25 full-fidelity evaluations per method per (task, LLM) pair.

● Cost metric: Number of LLM calls used (model-agnostic and interpretable).

● Repetitions: Each experiment is repeated 30 times for statistical reliability.

● Prompt evaluation metric: Based on exact match scoring function.
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Baselines and competitors
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Results and analysis
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Main results
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Ablation: Components of HbBoPs
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Sensitivity Analysis: Encoder Model
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Conclusions and future directions
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Conclusions
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● HbBoPs enables efficient black-box prompt selection using structural-aware modeling and 
adaptive fidelity scheduling.

● Outperforms state-of-the-art methods (e.g., MIPROv2, EASE, TRIPLE) in performance and 
efficiency.

● Uses Deep Kernel GP to model downstream prompt performance (instructions + exemplars).
● Uses Hyperband to allocate evaluation resources cost-effectively.
● Robust across 10 tasks and 3 LLMs under tight evaluation budgets.
● Avoids full evaluation of all prompts, enhancing scalability.
● Offers a strong baseline for static black-box prompt selection.
● Prompt selection / optimization can be an interesting venue for AutoML methods.



Future directions

● Extend to richer prompt space (output guidance, formatting constraints, …).

● Extend to multi-objective setting (number of few-shot examples in exemplar and prompt length).

● Integrate into end-to-end prompt optimization pipelines.

● Investigate robustness to noisy performance estimates in low-fidelity settings.
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